Estratégias nutricionais para potencializar o uso do nitrogênio em ruminantes
Renata Santos Fróes.
Instituto Federal Baiano, Campus Santa Inês.
Diego Novais Pinheiro.
Instituto Federal do Piauí, Campus Uruçuí.
Publicado em: 20 set. 2023.
Como citar:
FRÓES, R. S.; PINHEIRO, D. N.. Estratégias nutricionais para potencializar o uso do nitrogênio em ruminantes. Boletim Científico Agronômico do CCAAB/UFRB, v. 1, e2258, 2023. Disponível em: https://ufrb.edu.br/ccaab/boletim-cientifico-agronomico-do-ccaab-volume1/2258-2258-pdf
____________________________________
Resumo: Este artigo de revisão analisou estratégias alimentares para otimizar o uso do nitrogênio por ruminantes, visando à produção animal sustentável e à redução dos impactos ambientais na pecuária intensiva. Foram abordadas as manipulações da dieta e nutrição, como o uso de saponinas, óleos essenciais e extrato de própolis. As saponinas, substâncias fitoquímicas presentes em plantas, foram destacadas por sua capacidade de inibir protozoários ruminais, contribuindo para a redução da emissão de metano e a melhoria da eficiência da síntese de proteína microbiana. Já os óleos essenciais, compostos aromáticos voláteis, mostraram-se eficazes na modulação da fermentação ruminal, redução da produção de metano e aumento da eficiência energética. O extrato de própolis, uma substância resinosa produzida por abelhas, foi discutido devido às suas propriedades antimicrobianas seletivas, que impactam positivamente a fermentação ruminal, reduzindo a degradação de proteínas e a produção de amônia. Em última análise, a otimização do uso do nitrogênio por ruminantes é essencial para a sustentabilidade da produção animal. As estratégias alimentares apresentadas oferecem oportunidades promissoras para melhorar a eficiência produtiva e reduzir o impacto ambiental, contribuindo para um futuro mais sustentável na pecuária. No entanto, a pesquisa contínua e a colaboração entre cientistas, produtores e formuladores de políticas são necessárias para avançar nesse campo e alcançar soluções práticas e eficazes.
Palavras-chave: Saponinas. Óleos essenciais. Extrato de própolis. Nutrição animal. Sustentabilidade.
Abstract: This review article examined dietary strategies to optimize nitrogen utilization in ruminants, aiming for sustainable animal production and reduced environmental impacts in intensive livestock farming. Dietary and nutritional manipulations, such as the use of saponins, essential oils, and propolis extract, were discussed. Saponins, phytochemical substances found in plants, were highlighted for their ability to inhibit ruminal protozoa, contributing to methane emission reduction and improved microbial protein synthesis efficiency. Essential oils, volatile aromatic compounds, proved effective in modulating ruminal fermentation, reducing methane production, and enhancing energy efficiency. Propolis extract, a resinous substance produced by bees, was explored due to its selective antimicrobial properties, positively impacting ruminal fermentation by reducing protein degradation and ammonia production. Ultimately, optimizing nitrogen utilization in ruminants is crucial for the sustainability of animal production. The presented dietary strategies offer promising opportunities to enhance productivity and reduce environmental impact, contributing to a more sustainable future in livestock farming. However, ongoing research and collaboration among scientists, producers, and policymakers are necessary to advance this field and achieve practical and effective solutions.
Keywords: Saponins. Essential oils. Propolis extract. Animal nutrition.
____________________________________
Referências
ADDISU, S. Effect of dietary tannin source feeds on ruminal fermentation and production of cattle; a review. Online Journal of Animal and Feed Research, v. 6, n. 2, p 45-56, 2016. Disponível em: https://www.ojafr.ir/main/attachments/article/120/Online%20J.%20Anim.%20Feed%20Res.,%206(2)%2045-56,%202016.pdf. Acesso em: 12 set. 2023.
ADEJORO, F. A; HASSEN, A; AKANMU, A. M. Effect of Lipid-Encapsulated Acacia Tannin Extract on Feed Intake, Nutrient Digestibility and Methane Emission in Sheep. Animals, v. 9, n. 11, p. 863, 2019. DOI: https://doi.org/10.3390/ani9110863.
AGUIAR, S.C.D.; DE PAULA, E.M.; YOSHIMURA, E.H.; DOS SANTOS, W.B.R.; MACHADO E. Effects of phenolic compounds in propolis on digestive and ruminal parameters in dairy cows. Revista Brasileira de Zootecnia, v., 43 n. 4, p. 197-206. 2014. DOI: https://doi.org/10.1590/S1516-35982014000400006.
ALBORES-MORENO, S.; ALAYÓN-GAMBOA, J. A.; AYALA-BURGOS, A. J.; SOLORIO-SÁNCHEZ, F. J.; AGUILAR-PÉREZ, C. F.; OLIVERA-CASTILLO, L.; KU-VERA, J. C. Effects of feeding ground pods of Enterolobium cyclocarpum Jacq. Griseb on dry matter intake, rumen fermentation, and enteric methane production by Pelibuey sheep fed tropical grass. Tropical Animal Health and Production, v. 49, n. 4, p. 857-866, 2017. DOI: https://doi.org/10.1007/s11250-017-1275-y.
ALMEIDA, A. K.; HEGARTY, R. S.; COWIE, A. Meta-analysis quantifying the potential of dietary additives and rumen modifiers for methane mitigation in ruminant production systems. Animal Nutrition, v. 7, n. 4, p. 1219-1230, 2021. DOI: https://doi.org/10.1016/j.aninu.2021.09.005.
ARTEAGA-WENCES, Y.J.; ESTRADA-ANGULO, A.; RÍOS-RINCÓN, F.G. Gerardo; CASTRO-PÉREZ, B.I.; MENDOZA-CORTÉZ, D.A.; MANRIQUEZ-NðÑEZ, O.M.; BARRERAS, A.; CORONA-GOCHI, L.; ZINN, R.A.; PEREA-DOMÍNGUEZ, X.P. The effects of feeding a standardized mixture of essential oils vs monensin on growth performance, dietary energy and carcass characteristics of lambs fed a high-energy finishing diet. Small Ruminant Research, v. 205, p. 106557, 2021. DOI: https://doi.org/10.1016/j.smallrumres.2021.106557.
BENCHAAR, C.; CALSAMIGLIA, S.; CHAVES, A. V.; FRASER, G. R.; COLOMBATTO, D., MCALLISTER, T. A.; BEAUCHEMIN, K. A. A review of plant-derived essential oils in ruminant nutrition and production. Animal Feed Science and Technology, v. 145, p. 1–4, 2008. DOI: https://doi.org/10.1016/j.anifeedsci.2007.07.006.
CIESLAK, A.; ZMORA, P.; PERS-KAMCZYC, E.; SZUMACHER-STRABEL, M. Effects of tannins source (Vaccinium vitis idaea L.) on rumen microbial fermentation in vivo. Animal Feed Science and Technology, v. 176, n. 1-4, p. 102-106, 2012. DOI: https://doi.org/10.1016/j.anifeedsci.2012.07.012.
COBELLIS, G.; TRABALZA-MARINUCCIA, M.; MARCOTULLIOC, M. C.; YUB, Z. Evaluation of different essential oils in modulating methane and ammonia production, rumen fermentation, and rumen bacteria in vitro. Animal Feed Science and Technology, v. 215, p. 25-36, 2016. DOI: https://doi.org/10.1016/j.anifeedsci.2016.02.008.
COSTA, E. I. DE S.; RIBEIRO, C. V. DI M.; SILVA, T. M.; BATISTA, A. S. M.; VIEIRA, J. F.; BARBOSA, A. M.; SILVA JÚNIOR, J. M. DA; BEZERRA, L.R.; PEREIRA, E.S.; OLIVEIRA, R.L. Effect of dietary condensed tannins inclusion from Acacia mearnsii extract on the growth performance, carcass traits and meat quality of lambs. Livestock Science, v. 253, p. 104717, 2021. DOI: https://doi.org/10.1016/j.livsci.2021.104717.
DABESTANI, M.; YEGANEHZAD, S.; MILLER, R. A natural source of saponin: comprehensive study on interfacial properties of chubak (acanthophyllum glandulosum) root extract and related saponins. Colloids and Surfaces A: Physicochemical and Engineering Aspects, v. 630, p. 127594, 2021. DOI: https://doi.org/10.1016/j.colsurfa.2021.127594.
DAS, A. K.; ISLAM, M. D. N.; FARUK, M.D.; O, ASHADUZZAMA, M.D.; DUNGANI, R. Review on tannins: extraction processes, applications and possibilities. South African Journal of Botany, v. 135, p. 58-70, 2020. DOI: https://doi.org/10.1016/j.sajb.2020.08.008.
DENTINHO, M. T. P.; PAULOS, K.; PORTUGAL, P. V.; MOREIRA, O. C.; SANTOS-SILVA, J.; BESSA, R. J. B. Proteolysis and in situ ruminal degradation of lucerne ensiled with Cistus ladanifer tannins. Grass and Forage Science, v. 74, n. 1, p. 78-85, 2018. DOI: https://doi.org/10.1111/gfs.12394.
DSCHAAK, C. M.; WILLIAMS, C. M.; HOLT, M. S.; EUN, J.-S.; YOUNG, A. J.; MIN, B. R. Effects of supplementing condensed tannin extract on intake, digestion, ruminal fermentation, and milk production of lactating dairy cows. Journal Dairy Science, Champaign, v. 94, p. 2508-2519, 2011. DOI: https://doi.org/10.3168/jds.2010-3818.
EHTESHAM, S.; VAKILI A.R.; DANESH, M. M.; ANDBANKOVA, V. The Effects of phenolic compounds in Iranian propolis extracts on in and microbial population. Iran Journal Applied Animal Science, v. 8, n. 1, p. 33-41, 2018. Disponível em: https://ijas.rasht.iau.ir/article_538743_e3a6819de5b2aef135f1195819d12a9a.pdf. Acesso em: 12 set. 2023.
FERNANDES, J.; PEREIRA F. J.; M, D.; CALDAS, A. C.; CAVALCANTE, I.; OLIVEIRA, J.; OLIVEIRA, R. L; SILVA JÚNIOR, J.; CÉZAR, M.; BEZERRA, L.; Carcass and meat quality in lambs receiving natural tannins from Mimosa tenuiflora hay. Small Ruminant Research, v. 198, p. 106362, 2021. DOI: https://doi.org/10.1016/j.smallrumres.2021.106362.
FRANCIS, G.; KEREM, Z.; MAKKAR, H. P. S.; BECKER, K. The biological frontier in flavonoid research New Phytologist v. 165, p.9-28, 2002. DOI: https://doi.org/10.1111/j.1469-8137.2004.01217.x.
GÓRAL, I.; STOCHMAL, A.; WOJCIECHOWSKI, K. Surface activity of the oat, horse chestnut, cowherb, soybean, quinoa and soapwort extracts – Is it only due to saponins? Colloid And Interface Science Communications, v. 42, p. 10040. 2021. DOI: https://doi.org/10.1016/j.colcom.2021.100400.
HAQUE, M. N. Dietary manipulation: a sustainable way to mitigate methane emissions from ruminants. Journal of Animal Science and Technology, v. 60, n. 15, 2018. DOI: https://doi.org/10.1186/s40781-018-0175-7.
HASAN, A.E.Z.; AMBARSARI, L.; WIDJAJA, W.K.; PRASETYO, R. Potency of nanopropolis stingless bee Trigona spp Indonesia as antibacterial agent. IOSR Journal Pharm, v. 4, n. 2 p. 1-9, 2021. Disponível em: http://www.iosrphr.org/papers/v4i12/Version-2/A041220109.pdf. Acesso em: 12 set. 2023.
HINO, T.; RUSSELL, J.B. Relative contributions of ruminal bacteria and protozoa to the degradation of protein in vitro. Journal of Animal Science, v. 64, p. 261-270, 1986. DOI: https://doi.org/10.2527/jas1987.641261x.
HUANG, Q.; LIU, X.; ZHAO, G.; HU, T.; WANG, Y. Potential and challenges of tannins as an alternative to in-feed antibiotics for farm animal production. Animal Nutrition, v. 4, n. 2, p. 137-150, 2018. DOI: https://doi.org/10.1016/j.aninu.2017.09.004.
KLEVENHUSEN, F. A.; MURO-REYES, R.; KHIAOSA-ARD, B. U.; METZLER, Z.; ZEBELI, Q. A meta-analysis of effects of chemical composition of incubated diet and bioactive compounds on in vitro ruminal fermentation. Animal Feed Science. Technology. V. 176, p.61–69, 2012. DOI: https://doi.org/10.1016/j.anifeedsci.2012.07.008.
KHORSHIDIAN, N.; YOUSEFI, M.; KHANNIRI, E.; MORTAZAVIAN, A. M. Potential application of essential oils as antimicrobial preservatives in cheese. Innovative Food Science and Emerging Technologies, v. 45, p. 62–72, 2018. DOI: https://doi.org/10.1016/j.ifset.2017.09.020.
KHIAOSA-ARD, R.; ZEBELI, Q. Meta-analysis of the effects of essential oils and their bioactive compounds on rumen fermentation characteristics and feed efficiency in ruminants1. Journal of Animal Science, v. 91, n. 4, p. 1819-1830, 2013. DOI: https://doi.org/10.2527/jas.2012-5691.
KOCOT, J.; KI, C. M.; LUCHOWSKA-KOCOT, D.; KURZEPA, J.; MUSIK, I. Antioxidant potential of propolis, bee pollen, and royal jelly: possible medical application. Oxidative Medicine and Cellular Longevity, v. 2018, 7074209, 2018. DOI. https://doi.org/10.1155/2018/7074209.
KYRIAZAKIS, I.; ATHANASIADOU, S.; GIANNENAS, I. Nutritional strategies to control gastrointestinal parasitism in small ruminants. Advances in Animal Biosciences, v. 1, n. 2, p. 390-391, 2010. DOI: https://doi.org/10.1017/S204047001000018X.
LE BOURVELLEC, C.; RENARD, C. M. G. C. Interactions between Polyphenols and Macromolecules: Quantification Methods and Mechanisms. Critical Reviews in Food Science and Nutrition, v. 52, n. 3, p. 213–248, 2012. DOI: https://doi.org/10.1080/10408398.2010.499808.
MCSWEENEY, C.S; PALMER, B; MCNEILL, D.M; KRAUSE, D.O. Microbial interactions with tannins: nutritional consequences for ruminants. Animal Feed Science and Technology, v. 91, n. 1-2, p. 83-93, 2001. DOI: https://doi.org/10.1016/S0377-8401(01)00232-2.
MERGEDUŁ, A.; PENKOVÁ, M.; JANŽEKOVI, M. Tannins and their Effect on Production Efficiency of Ruminants. Agricultura, v. 12, n. 1-2, p. 1-11, 2020. DOI: https://doi.org/10.18690/agricultura.15.1-2.1-11.2018.
MIN, B.R; BARRY, T.N; ATTWOOD, G.T; MCNABB, W.C. The effect of condensed tannins on the nutrition and health of ruminants fed fresh temperate forages: a review. Animal Feed Science and Technology, v. 106, n. 1-4, p. 3-19, 2003. DOI: https://doi.org/10.1016/S0377-8401(03)00041-5.
MIN, B.; SOLAIMAN, S.; WALDRIP, H. M.; PARKER, D.; TODD, R. W.; BRAUER, D. Dietary mitigation of enteric methane emissions from ruminants: a review of plant tannin mitigation options. Animal Nutrition, v. 6, n. 3, p. 231-246, 2020. DOI: https://doi.org/10.1016/j.aninu.2020.05.002.
MOLINA-BOTERO, I. C.; ARROYAVE-JARAMILLO, J.; VALENCIA-SALAZAR, S.; BARAHONA-ROSALES, R.; AGUILAR-PÉREZ, C. F.; BURGOS, A. A.; ARANGO, J.; KU-VERA, J. C. Effects of tannins and saponins contained in foliage of Gliricidia sepium and pods of Enterolobium cyclocarpum on fermentation, methane emissions and rumen microbial population in crossbred heifers. Animal Feed Science and Technology, v. 251, p. 1-11, 2019. DOI: https://doi.org/10.1016/j.anifeedsci.2019.01.011.
MORSY, A.S.; SOLTAN, Y.A.; SALLAM, S.M.A.; KREUZER, M.; ALENCAR, S.M. Comparison of the in vitro efficiency of supplementary bee propolis of different origin in enhancing ruminal nutriente degradation and mitigating methane formation. Animimal Feed Science and Technology, v. 199, n. 1, p. 51-60, 2015. DOI: https://doi.org/10.1016/j.anifeedsci.2014.11.004.
NAUMANN, H. D.; TEDESCHI, L. O.; ZELLER, W. E.; HUNTLEY, N. F. The role of condensed tannins in ruminant animal production: advances, limitations and future directions. Revista Brasileira de Zootecnia, v. 46, n. 12, p. 929-949, 2017. DOI: https://doi.org/10.1590/S1806-92902017001200009.
NOIROT, V. R.; MONCOULON, D.; SAUVANT, C. BAYOURTHE. Effect of essential oils and essential oils compounds supplementations in ruminant species: statistical analysis. Revue Médecine Vétérinaire, v. 158, p. 589–597, 2007. Disponível em: https://www.researchgate.net/publication/286360467_Effect_of_essential_oils_and_essential_oils_compounds_supplementations_in_ruminant_species_Statistical_analysis. Acesso em: 12 set. 2023.
OZTURK, H.; PEKCAN, M.; SIRELI, M.; FIDANCI, U.R. Effects of propolis on in vitro rumen microbial fermentation. Üniversitesi Veteriner Fakültesi Dergisi, v. 57, n. 1, p. 217-221, 2010. DOI: https://doi.org/10.1501/Vetfak_0000002428.
PASSOS, B. G.; ALBUQUERQUE, R. D. D. G.; MUÑOZ-ACEVEDO, A.; ECHEVERRIA, J.; LLAURE-MORA, A. M.; GANOZA-YUPANQUI, M. L.; ROCHA, L. Essential oils from Ocotea species: chemical variety, biological activities and geographic availability. Fitoterapia, p. 105065, 2021. DOI: https://doi.org/10.1016/j.fitote.2021.105065.
PATRA, A. K.; SAXENA, J. Review: A new perspective on the use of plant secondary metabolites to inhibit methanogenesis in the rúmen. Phytochemistry, v. 71, p. 1198-1222, 2010. DOI: https://doi.org/10.1016/j.phytochem.2010.05.010.
PILUZZA, G.; SULAS, L.; BULLITTA, S. Tannins in forage plants and their role in animal husbandry and environmental sustainability: A review. Grass and Forage Science, v. 69, n. 1, p. 32-48, 2014. DOI: https://doi.org/10.1111/gfs.12053.
RODRÍGUEZ, R.; DE LA FUENTE, G.; GOMEZ, S.; FONDEVILA, M. Biological effect of tannins from different vegetal origin on microbial and fermentation traits in vitro. Animal Product Science., v. 54, n. 8, p. 1039–1046. 2014. DOI: https://doi.org/10.1111/gfs.12053.
RUFATTO, L.C.; PAOLA, L.; CHARLENE, G.; CHRISTINE, T.; SYLVIE, B. Brazilian red propolis: Chemical composition and antibacterial activity determined using bio guided fractionation. Microbiol Reserch, v. 214, p. 74-82. 2018. DOI: https://doi.org/10.1016/j.micres.2018.05.003.
RUSSELL, J. B. Rumen microbiology and its role in ruminant nutrition.2002. 119 p.
SANTOS, N.W.; ZEOULA, L.M.; YOSHIMURA, E. H.; MACHADO, E.; MACHEBOEUF, D. Brazilian própolis extract used as an additive to decrease methane emissions from the rumen microbial population in vitro. Tropical Animal Health Produce, v. 48, n. 5, p. 1051- 1056, 2016. DOI: https://doi.org/10.1007/s11250-016-1062-1.
SEVEN, P.T.; SEVEN, I.; BAYKALIR, B.G.; MUTLU, S.I.; SALEM, A.Z.M. Nanotechnology and nanopropolis in animal production and health: na overview. Italian Journal Animal Science,v. 17, n. 4, p.921-930, 2018. DOI: https://doi.org/10.1080/1828051X.2018.1448726.
SCALBERT, A. Antimicrobial properties of tannins. Phytochemistry, Chichester, v.30, n.12, p.3875-3883, 1991. DOI: https://doi.org/10.1016/0031-9422(91)83426-L.
SILVA, J. A. da; ÍTAVO, C.C.B.F.; ÍTAVO, L.C.V.; DA GRAÇA, M. M.; DA SILVA, P.C.G. Dietary addition of crude form or ethanol extract of brown propolis as nutritional additive on behaviour, productive performance and carcass traits of lambs in feedlot. Animal Feed Science and Technology, v. 28, n. 1, p. 31-40, 2019. DOI: https://doi.org/10.22358/jafs/105442/2019.
SOARES, M. S. S.; SILVA, L. G.; FRAZÃO, O. S.; SILVA, A. L. N. Aditivos alimentares na nutrição de ruminantes. Revista eletrônica nutritime, v. 12, n. 4, p. 4162- 4174, 2015. Disponível em: https://nutritime.com.br/wp-content/uploads/2020/02/Artigo-314.pdf. Acesso em: 12 set. 2023.
SOLTAN, Y. A.; PATRA, A. K. Bee propolis as a natural feed additive: bioactive compounds and effects on ruminal fermentation pattern as well as productivity of ruminants. Indian Journal Of Animal Health, v. 59, n. 2-, p. 50-61, 1 dez. 2020. DOI: http://dx.doi.org/10.36062/ijah.59.2spl.2020.50-61.
TAVENDALE, M. H.; MEAGHER, L. P.; PACHECO, D.; WALKER, N.; ATTWOOD, G. T.; SIVAKUMARAN, S. Methane production from in vitro rumen incubations with Lotus pedunculatus and Medicago sativa, and effects of extractable condensed tannin fractions on methanogenesis. Animal Feed Science and Technology, v. 123-124, p. 403-419, 2005. DOI: http://dx.doi.org/10.1016/j.anifeedsci.2005.04.037.
THEODORIDOU, K.; AUFRÈRE, J.; ANDUEZA, D.; POURRAT, J.; LE MORVAN, A.; STRINGANO, E.; BAUMONT, R. Effects of condensed tannins in fresh sainfoin (Onobrychis viciifolia) on in vivo and in situ digestion in sheep. Animal Feed Science and Technology, v. 160, n. 1, p. 23-38, 2010. DOI: https://doi.org/10.1016/j.anifeedsci.2010.06.007.
TOSETI, L. B.; GOULART, R. S.; GOUVÊA, V. N.; ACEDO, T. S.; VASCONCELLOS, G. S. F. M.; PIRES, A. V.; LEME, P. R.; SARAN, A.; SILVA, S. L. Effects of a blend of essential oils and exogenous α-amylase in diets containing different roughage sources for finishing beef cattle. Animal Feed Science and Technology, v. 269, p. 114643, 2020. DOI: https://doi.org/10.1016/j.anifeedsci.2020.114643.
VASTA, V.; DAGHIO, M.; CAPPUCCI, A.; BUCCIONI, A.; SERRA, A.; VITI, C.; MELE, M. Plant polyphenols and rumen microbiota responsible for fatty acid biohydrogenation, fiber digestion, and methane emission: experimental evidence and methodological approaches. Journal Dairy Science. 2019. DOI: https://doi.org/10.3168/jds.2018-14985.
VINCKEN, J. P.; HENG, L.; GROOT, A.; GRUPPEN, A. Saponins, classification and occurrence in the plant kingdom. Phytochemistry, v. 68, p. 275-297, 2007. DOI: https://doi.org/10.1016/j.phytochem.2006.10.008.
WINA, E.; MUETZEL, S.; BECKER, K. The impact of saponins or saponincontaining plant materials on ruminant productions: A review. Journal of Agricultural and Food Chemistry, v. 53, p. 8093-8105, 2005. DOI: https://doi.org/10.1021/jf048053d.