UNIVERSIDADE FEDERAL DO RECÔNCAVO DA BAHIA CENTRO DE CIÊNCIAS AGRÁRIAS AMBIENTAIS E BIOLÓGICAS EMBRAPA MANDIOCA E FRUTICULTURA PROGRAMA DE PÓS-GRADUAÇÃO EM RECURSOS GENÉTICOS VEGETAIS CURSO DE MESTRADO

DESENVOLVIMENTO DE FERRAMENTAS MOLECULARES E SELEÇÃO
ASSISTIDA POR MARCADORES PARA RESISTÊNCIA AO VÍRUS DO
MOSAICO AFRICANO NA CULTURA DA MANDIOCA

CATIA DIAS DO CARMO

CRUZ DAS ALMAS – BAHIA

JULHO - 2014

DESENVOLVIMENTO DE FERRAMENTAS MOLECULARES E SELEÇÃO ASSISTIDA POR MARCADORES PARA RESISTÊNCIA AO VÍRUS DO MOSAICO AFRICANO NA CULTURA DA MANDIOCA

CATIA DIAS DO CARMO

Engenheira Florestal

Universidade Estadual do Sudoeste da Bahia (UESB), 2009.

Dissertação submetida ao Colegiado de Curso do Programa de Pós-Graduação em Recursos Genéticos Vegetais da Universidade Federal do Recôncavo da Bahia e Embrapa Mandioca e Fruticultura, como requisito parcial para obtenção do Grau de Mestre em Recursos Genéticos Vegetais.

Orientador: Prof. Dr. Eder Jorge de Oliveira

UNIVERSIDADE FEDERAL DO RECÔNCAVO DA BAHIA EMBRAPA MANDIOCA E FRUTICULTURA MESTRADO EM RECURSOS GENÉTICOS VEGETAIS CRUZ DAS ALMAS – BAHIA – 2014

FICHA CATALOGRÁFICA

C287 Carmo, Catia Dias do

Desenvolvimento de ferramentas moleculares e seleção assistida por marcadores para resistência ao vírus do mosaico africano na cultura da mandioca / Catia Dias do Carmo. - Cruz das Almas, BA, 2014.

102f.; il.

Orientador: Prof° Dr°. Eder Jorge de Oliveira

Dissertação (Mestrado) - Universidade Federal do Recôncavo da Bahia, Centro de Ciências Agrárias, Ambientais e Biológicas -CCAAB.

1. Mandioca - Melhoramento genético. 2. Mandioca -Doenças e pragas. 3. Vírus do mosaico da mandioca. L Universidade Federal do Recôncavo da Bahia, Centro de Ciências Agrárias, Ambientais e Biológicas - CCAAB. II. Título. CDD: 633.682

Ficha elaborada pela Biblioteca Universitária de Cruz das Almas - UFRB.

UNIVERSIDADE FEDERAL DO RECÔNCAVO DA BAHIA CENTRO DE CIÊNCIAS AGRÁRIAS, AMBIENTAIS E BIOLÓGICAS PROGRAMA DE PÓS-GRADUAÇÃO EM RECURSOS GENÉTICOS VEGETAIS

COMISSÃO EXAMINADORA DA DEFESA DE DISSERTAÇÃO DA ALUNA CATIA DIAS DO CARMO

	Querr
	Prof. Dr. Eder Jorge de Oliveira
	Embrapa Mandioca e Fruticultura
	Orientador
Calos	BM. C. SIM.

Prof. Dr. Carlos Bernard Moreno Cerqueira Silva Universidade Estadual do Sudoeste da Bahia

Rrof.ª Dra Simone Alves Silva Universidade Federal do Recôncavo da Bahia

Dissertação	o hor	nologad	a pelo	Colegia	do do	Curso de	Mestrado er	n Recursos
Genéticos	Vege	etais er	n					,
conferindo	0	Grau	de	Mestre	em	Recursos	Genéticos	Vegetais
em						7.7		

A todos os que acreditam que a pesquisa pode fazer a diferença, a minha razão Dona Dinha e Seu Antônio e a todos que amo **dedico**.

AGRADECIMENTOS

A Universidade Federal do Recôncavo da Bahia, a Embrapa Mandioca e Fruticultura e aos professores da pós-graduação pela oportunidade da realização do curso de Mestrado.

Ao convênio firmado entre a Coordenação de Aperfeiçoamento de Pessoal de Nível Superior e a Empresa Brasileira de Pesquisa Agropecuária (Embrapa) pelo apoio financeiro e concessão de bolsa de estudo.

Ao meu orientador Eder Jorge pela confiança, serenidade e principalmente paciência. Por sempre primar a construção do conhecimento, o trabalho em equipe, pela exigência e pela disponibilidade.

Aos amigos do Laboratório de Biologia Molecular que partilharam seus ensinamentos e amizade: A Maiane pelos primeiros ensinamentos; a Dalma e a Vandeson pela dedicação e companhia sempre (*Mi manchi*) e pelo apoio na obtenção dos dados; a Gilmara pelas valiosas dicas de logística ("cola em mim que você brilha"); a Marciene pela companhia no "busão", conselhos e por partilhar sua experiência e conhecimento sobre BioMol; a Patricia (flor-demaracujá) que sempre me salvava na volta para casa e pelas deliciosas conversas; a Luziane sempre minuciosa e prestativa; as analistas Fernanda e Andresa que com o bom trabalho prestados a unidade proporcionaram o bom funcionamento do laboratório; ao seu Raimundo pela experiência partilhada; a Rogério por ouvir atentamente minhas dúvidas e pela disponibilidade em partilhar seu conhecimento; aos novos habitantes do laboratório Zanon, Priscila "equipe Cláudia": Paulo e suas filhas Carol, Naíra, lane e as antigas habitantes do laboratório Rafaela, Chirlei, Adila e Janaíra pela descontração e conhecimentos transmitidos.

As amigas/filhas/irmãs Elaine, Letícia, Selma e Poli com quem tive a felicidade/sorte/prazer de partilhar a mesma casa e a vida cotidiana durante o mestrado. Pelo cuidado de sempre com meus horários de almoço e pela convivência sincera: uma verdadeira família.

A Josivania e a Cinara pelas boas risadas, passeios e guloseimas. Também a Adriana Fiuza que gentilmente cedeu o mobiliário do quarto para minha estadia em Cruz das Almas e pelas conversas e delícias servidas na sua casa. Ao Sr. Duda, meu "moto táxi favorito", por prestar sempre com honestidade e cuidado seu serviço. A companheira de orientação Marcela, pelo apoio de sempre e por partilhar de sua história e sentimentos (geralmente comuns aos meus). Aos demais colegas do curso de pós-graduação, em especial a Valber e aos amigos conquistados nessa cidade pelo convívio e troca de conhecimentos.

Aos professores Alessandro de Paula e Avaldo de Oliveira Soares Filho da Universidade Estadual do Sudoeste da Bahia e a toda equipe de trabalho do Centro Territorial de Educação Profissional – Vitória da Conquista que tanto contribuíram na minha formação profissional e que sempre incentivaram o ingresso no mestrado.

A minha família pela compreensão da ausência. Ao meu pai e a minha mãe pelo apoio de sempre. A minha irmã Cassia e seu digníssimo Michael, que sempre me abrigaram nos fins de semana e pelas deliciosas discussões sobre ciência geral. A Diogo, meu companheiro, pela atenção dada a minhas dúvidas, pelos momentos de reflexão, leituras, pesquisas e discussões fundamentais no aprimoramento das minhas ideias, pelos conselhos e amparo constante.

Aos membros da banca, Prof. Carlos Bernard e Prof^a. Simone, pelas sugestões para a melhoria desse trabalho.

A todos que a falta de memória não permitiu nomear e que contribuíram de forma direta ou indireta para a realização desse trabalho.

Muito obrigada!

"Tudo que é demais é sobra."

$N/I \cap II$	\sim	sempre	ヽヘ・マ
IVIELL	1)71	>=::::::::::::::::::::::::::::::::::::	- (11/
11100	Pu	COLLIDIO	<i>,</i> 4:2

"Guarda o que comer não o que fazer."

Minha mãe sempre diz.

Sugiro a leitura dos artigos:

"Darwin e a prática da 'Salami Science'" disponível em:

http://www.estadao.com.br/noticias/impresso,darwin-e-a-pratica-da-salami-science,1026037,0.htm

"Salami Science x Ping Pong Science" disponível em:

http://www.jornaldaciencia.org.br/Detalhe.php?id=91320

"Avaliação acadêmica: muito além do jardim" disponível em:

http://blogconvergencia.org/blogconvergencia/?p=1915

SUMÁRIO

	Página
RESUMO	
ABSTRACT	
INTRODUÇÃO	1
Capítulo I	
DESENVOLVIMENTO DE MARCADORES TRAP (Target Region	
Amplification Polymorphism) COMO NOVA FERRAMENTA	
MOLECULAR PARA ANÁLISES GENÉTICAS NA CULTURA DA	
MANDIOCA	18
Capítulo II	
SELEÇÃO ASSISTIDA POR MARCADORES MOLECULARES PARA	
RESISTÊNCIA AO <i>Cassava Mosaic Disease</i> NA CULTURA DA	
MANDIOCA	60
CONSIDERAÇÕES FINAIS	101

DESENVOLVIMENTO DE FERRAMENTAS MOLECULARES E SELEÇÃO ASSISTIDA POR MARCADORES PARA RESISTÊNCIA AO VÍRUS DO MOSAICO AFRICANO NA CULTURA DA MANDIOCA

Autora: Catia Dias do Carmo

Orientador: Prof. Dr. Eder Jorge de Oliveira

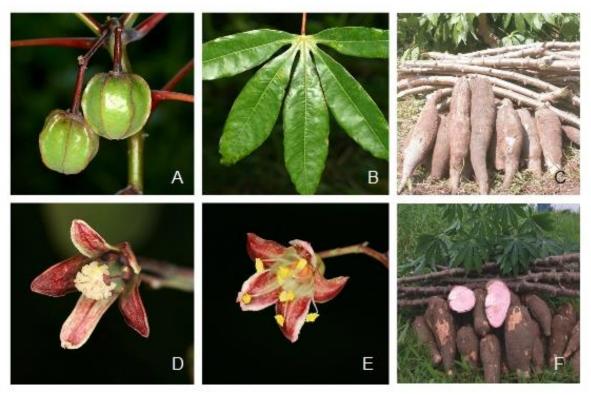
RESUMO: Este trabalho teve como objetivo desenvolver e caracterizar marcadores do tipo TRAP (Target Region Amplification Polymorphism) na cultura da mandioca (Manihot esculenta Crantz), bem como selecionar acessos com genes de resistência ao vírus do mosaico africano via seleção assistida por marcadores (SAM). Foram desenvolvidos e validados iniciadores TRAP com alto polimorfismo, baixo custo operacional e fácil implementação. Das 396 combinações, as 69 mais polimórficas foram utilizadas na caracterização de 46 acessos de germoplasma, cujos valores de conteúdo de informação polimórfica e poder de resolução foram maiores que 0,25 e 3,21, respectivamente. Estes TRAPs estão associados a regiões gênicas relacionadas a biossíntese de amido, carotenoides, compostos cianogênicos, deterioração fisiológica pós-colheita, formação de raízes tuberosas e respostas de defesa. Em relação à identificação de fontes de resistência ao CMD foram identificados sete acessos que apresentaram alelos ligados ao gene CMD2. A análise discriminante de componentes principais (ADCP) das sete fontes de resistência ao CMD juntamente com 17 variedades elite de mandioca indicou a formação de três grupos de divergência, na qual as fontes de resistência ao CMD foram alocadas em dois diferentes grupos. As baixas estimativas de parentesco genômico (variação de -0,167 a 0,681, média de 0,076), contribuíram para o sucesso na orientação de cruzamentos contrastantes para geração de populações segregantes.

Palavras-chave: Marcadores moleculares, Diversidade genética, Seleção Assistida, Vírus do Mosaico Africano, TRAP.

.

DEVELOPMENT OF MOLECULAR TOOLS AND MARKER ASSISTED SELECTION FOR RESISTANCE TO CASSAVA MOSAIC DISEASE

Author: Catia Dias do Carmo Advisor: Eder Jorge de Oliveira


ABSTRACT: This study aimed to develop and characterize TRAP (*Target Region* Amplification Polymorphism) markers in cassava (Manihot esculenta Crantz) as well as select accessions with genes related to the resistance to Cassava Mosaic Disease (CMD) through marker-assisted selection (MAS). TRAP markers with high polymorphism, low operating cost and easy implementation were developed and validated. From 396 combinations, the 69 most polymorphic were used to characterize 46 germplasm accessions whose polymorphic information content and resolving power values were greater than 0.25 and 3.21, respectively. These TRAPs are associated with genic regions related to starch and carotenoids biosynthesis, cyanogenic compounds, post-harvest physiological deterioration, root formation and defense responses. Regarding the identification of CMD resistance sources, seven accessions which presented alleles linked to CMD2 gene were identified. The discriminant analysis of principal components (DAPC) of the seven CMD resistance sources along with 17 elite cassava varieties indicated the formation of three divergence groups in which the CMD resistance sources were divided into two different groups. The low estimates for genomic relatedness (range -0.167 to 0.681, average 0.076), contributed to the successful orientation of contrasting crosses to generate segregating populations.

Key words: Molecular marker, Genetic diversity, Marker Assisted Selection, Cassava mosaic disease, TRAP

INTRODUÇÃO

Aspectos gerais da cultura da mandioca

A *Manihot esculenta* Crantz, família Euphorbiaceae Juss. é uma planta perene, arbustiva, apresentando de 1 a 3m de altura, com folhas simples pecioladas, fruto do tipo cápsula e inflorescência do tipo panícula (Figura 1) sendo a espécie cultivada¹ da cultura (Descrição detalhada em Rogers 1965).

Figura 1: Aspectos botânicos da espécie *Manihot esculenta* Crantz. A: Fruto do tipo cápsula; B: Folha simples palmada; C: Manivas e raízes da variedade "BRS Tapioqueira"; D: Inflorescência feminina; E: Inflorescência masculina; F: Folhas, manivas e raízes da variedade "BRS Rosada".

Fonte: A, B, D e E - Fotografia de C. Gracie, Herbário on line New York Botanical Garden Disponível em: http://sweetgum.nybg.org/vh/specimen.php?irn=980092> Fonte: C e F Embrapa Mandioca e Fruticultura (Folder de divulgação).

¹ Entende-se por "espécie cultivada" o descrito no Decreto nº 2.519 que promulga a Convenção sobre Diversidade Biológica (Espécie domesticada ou cultivada significa espécie em cujo processo de evolução influiu o ser humano para atender suas necessidades).

Amplamente cultivada nos trópicos é propagada vegetativamente (popularmente por secções do caule denominadas de manivas), apesar de haver reprodução sexuada pela presença de inflorescências masculinas e femininas na mesma planta (monoica) (Figura 1) e polinização cruzada (alógama) devido à ocorrência de protoginia (GRANER, 1942) realizada principalmente por abelhas (SILVA et al., 2001).

No gênero *Manihot* são relatadas 98 espécies (ORLANDIN e LIMA, 2014) das quais 76 no Brasil (66 endêmicas) (CORDEIRO et al., 2014). Há indícios que a domesticação da espécie cultivada (*M. esculenta*) ocorreu na América Latina mais precisamente no sudoeste da Amazônia sendo levada para o continente africano pelos europeus e posteriormente ao continente asiático (CEBALLOS et al., 2004). No entanto, estudos sobre a origem da espécie cultivada e sobre a filogenia do gênero ainda não foram conclusivos mesmo com a utilização de marcadores moleculares (CHACÓN et al., 2008).

Algumas características sugerem um metabolismo intermediário C3 e C4 (El SHARKAWY et al., 1989), comportamento diploide 2n=36 (CARVALHO e GUERRA, 2002) e ampla adaptação a diversas condições de clima e solo. Requer baixo investimento em capital e trabalho, tolera a seca e solos ácidos e de baixa fertilidade e se recupera rapidamente de danos causados por pragas e doenças (CEBALLOS et al., 2012).

A produção mundial de mandioca no ano de 2013 foi de mais de 276,0 milhões de toneladas com destaque para a Nigéria, Indonésia e Brasil (FAO, 2014). No Brasil, a mandioca é produzida de Norte a Sul do país em diferentes condições edafoclimáticas com estimativa de 23,4 milhões de toneladas para 2014 (um aumento de 10,4% em relação ao ano de 2013) (IBGE, 2014a). O Nordeste brasileiro possui a maior estimativa de aumento da produção para este ano (25,2%) seguindo do Norte (6,4%), Sudeste (13,6%), Centro-Oeste (8,6%) e Sul (2,2%) (IBGE, 2014a). O estado do Pará se destaca como maior produtor de mandioca (4,7 milhões de toneladas) (IBGE, 2014b) cuja principal finalidade é a produção da farinha de mesa (SANTANA et al., 2010). Em contrapartida, a maior concentração de indústrias de fécula do país está localizada no estado do Paraná (FELIPE et al., 2013) onde a produção também é expressiva, sendo 4,07 milhões de toneladas porduzidas em 2014 (IBGE, 2014b).

Considerando a variedade como um insumo de produção, é preciso desenvolver novos materiais para atender as diferentes exigências de mercado. Variedades para a indústria, por exemplo, devem possuir características como produtividade, alto teor de matéria seca e de amido, enquanto para consumo humano as características de cozimento e coloração da raiz são mais importantes (CEBALLOS et al., 2012).

Apesar da forte competitividade brasileira a expansão da cultura da mandioca esbarra em alguns entraves importantes, como o reduzido tempo de prateleira, ocasionado pela deterioração fisiológica pós-colheita (BORGES et al., 2002), baixa produtividade em comparação com o potencial da cultura (FELIPE et al., 2013) e a baixa resistência a pragas e doenças.

O desenvolvimento de variedades com todas estas características constitui-se um grande desafio para o melhoramento da cultura, sobretudo quando associado ao período variável de floração, a baixa produção de sementes e a alta heterozigose inerente da cultura (CEBALLOS et al., 2012; FERGUSON et al., 2012). Além disso, a capacidade de atendimento da demanda por novas variedades é um grande desafio, principalmente devido ao longo período necessário para o desenvolvimento de uma nova cultivar², que está em torno de 8 a 10 anos (OKOGBENIN et al., 2012; FERGUSON et al., 2012). Neste caso, a utilização de estratégias para agilizar a seleção de genótipos com características de interesse e/ou direcionar a introgressão de alelos tem ganhado espaço nos programas de melhoramento.

Como o Brasil é considerado o centro de origem e diversidade da mandioca (OLSEN e SCHAAL, 2001), é crucial que o país conserve e utilize estes recursos genéticos para o desenvolvimento de variedades que atendam as expectativas dos agricultores. Atualmente, o germoplasma de mandioca encontra-se mantido em coleções de trabalho e bancos ativos de germoplasma distribuídos em vários países e instituições. Dentre eles podemos citar o da Empresa Brasileira de Pesquisa Agropecuária – EMBRAPA com sete bancos de germoplasma de mandioca regionalizados e mantidos nos principais ecossistemas: Embrapa Cerrados – DF; Embrapa Clima Temperado - RS, Embrapa Semiárido - PE, Embrapa Amazônia

-

² O termo "nova cultivar" é utilizado segundo Lei nº 9.456 Art. 3 (nova cultivar: a cultivar que não tenha sido oferecida à venda no Brasil há mais de doze meses em relação à data do pedido de proteção e que, observado o prazo de comercialização no Brasil, não tenha sido oferecida à venda em outros países, com o consentimento do obtentor, há mais de seis anos para espécies de árvores e videiras e há mais de quatro anos para as demais espécies).

Oriental - PA, Embrapa Amazônia Ocidental - AM, Embrapa Hortaliças - DF e Embrapa Mandioca e Fruticultura - BA (EMBRAPA/ALELO, 2014). Destaque para Embrapa Mandioca e Fruticultura com mais de 1.500 acessos em campo e 300 *in vitro*, além de uma coleção de espécies silvestres de *Manihot* com 600 acessos. Em nível internacional destacamos o Centro Internacional de Agricultura Tropical – CIAT na Colômbia com 6.592 acessos sendo 5.709 clones de *M. esculenta* e 883 de outras espécies do gênero *Manihot* mantidos in vitro (CIAT, 2014) e o Instituto Internacional de Agricultura Tropical – IITA com 3.746 acessos (IITA, 2014). Por outro lado, a falta de documentação e caracterização é apontada por Queiróz (1999) e Fukuda et al. (1999) como principal entrave na utilização destes recursos genéticos conservados.

Mesmo com restrições em relação à disponibilidade de informações completas de todo o germoplasma, avanços importantes tem sido alcançados na exploração da diversidade do gênero *Manihot*, a exemplo do desenvolvimento das variedades BRS Kiriris registro no Ministério da Agricultura, Pecuária e Abastecimento - MAPA n.º10711 (resistência à podridão de raízes e alta produtividade), BRS Verdinha registro MAPA n.º23265 (adaptada às condições de seca), BRS Tapioqueira registro MAPA n.º23264 e BRS Caipira registro MAPA n.º23262 (alto teor de amido) lançadas pela Embrapa Mandioca e Fruticultura para fins industriais em distintas regiões do Brasil (ARAÚJO e ALMEIDA, 2013).

Marcadores moleculares na cultura da mandioca

A caracterização molecular constitui-se uma importante ferramenta para as atividades de conservação e melhoramento de espécies. O nível de análise dos marcadores moleculares pode ser bioquímico ou ácido nucleicos de origem nuclear, mitocondrial ou cloroplastidial. Caracterização com marcadores de DNA pode ser realizada em qualquer tecido e/ou estádio de desenvolvimento da planta com neutralidade fenotípica e, portanto possui grande potencial para auxiliar no processo de caracterização, seleção de genótipos e *fingerprint* molecular de variedades. Marcadores moleculares de DNA podem ser definidos como um segmento de DNA, relacionados ou não com um fenótipo e que representam diferenças em nível de genoma (polimorfismo). Podem ser classificados segundo a técnica utilizada (PCR ou hibridização) (AGARWAL et al., 2008), em relação ao poder de discriminação da

frequência gênica (codominantes e dominante) e ainda de acordo como a informação alvo (ANDERSEN e LUBBERSTEDT, 2003), a exemplo de:

- Marcadores Randômicos polimorfismo gerado de forma aleatória no genoma não sendo necessário conhecimento prévio das sequências flanqueadoras;
- Marcadores Gene-alvo polimorfismo gerado dentro de genes;
- Marcadores Funcionais derivados de polimorfismo nos genes com relação comprovada entre a variação do genótipo e o fenótipo expresso.

Características desejáveis a qualquer tipo de marcador molecular incluem: polimorfismo e distribuição uniforme por todo o genoma; geração de múltiplos marcadores, independentes e confiáveis; baixo custo e praticidade da técnica; possibilidade de análise com quantidades de tecido e DNA limitadas; ter ligação com fenótipos distintos e não requerer informação prévia sobre o genoma do organismo (AGARWAL et al., 2008).

Especificamente na cultura da mandioca, os marcadores moleculares baseados no DNA têm sido utilizados para conservação, melhoramento e em estudos de filogenia das espécies do gênero *Manihot*. Na conservação e nas atividades de pré-melhoramento trabalhos de diversidade e variabilidade e de identificação de duplicatas são mais proeminentes. No âmbito do melhoramento, os usos se concentram no mapeamento de QTLs relacionadas a rotas importantes para a cultura, *fingerprint* de variedades e seleção de parentais.

Um dos primeiros trabalhos relatados sobre o uso de marcadores moleculares na cultura foi feito por Marmey et al. (1994) para estudo de diversidade genética do gênero *Manihot* com marcadores RAPD (*Random amplified polymorphic DNA*) e RFLP (*Restriction Fragment Length Polymorphism*). Após, o uso conjunto de marcadores RFLP e RAPD, microssatélites e isoenzimas (FREGENE et al., 1997), e marcadores AFLP (*Amplified fragment length polymorphism*) (FREGENE et al., 2000) marcam a primeira utilização de marcadores moleculares na construção de mapas genéticos na espécie cultivada.

Marcadores moleculares randômicos ainda foram utilizados para avaliar a relação entre espécies do gênero *Manihot* por marcadores AFLP (ROA et al., 1997) e ISSR (*Inter Simple Sequence Repeat*) (SILVA et al., 2011) e na detecção de variabilidade em etnovariedades (MÜHLEN et al., 2000) e acessos elites de mandioca (VIEIRA et al., 2010), assim como na caracterização de coleções de

germoplasma (MARMEY et al., 1994; COLOMBO et al., 2000; CARVALHO e SCHAAL, 2001; COSTA et al., 2003; ZACARIAS et al., 2004).

Microssatélites foram utilizados na cultura da mandioca para a identificação de duplicatas em coleções (CHAVARRIAGA-AGUIRRE et al., 1999; MOURA et al., 2013), análise de diversidade de germoplasma (SIQUEIRA et al., 2009; BANG et al., 2011; MEZZETE et al., 2013), e mapeamento genético (OKOGBENIN et al., 2006; WHANKAEW et al., 2011). Ainda em relação ao mapeamento da cultura foram desenvolvidos e mapeados 127 microssatélites oriundos de bibliotecas enriquecidas (MBA et al., 2001) utilizados posteriormente no mapeamento da resistência ao mosaico africano (AKANO et al., 2002) e na caracterização de etnovariedades (SARDOS et al., 2008).

Por outro lado, com o sequenciamento do genoma de M. esculenta (PROCHNIK et al., 2012) aliado ao uso da bioinformática é possível desenvolver novas ferramentas moleculares ainda limitadas para a cultura da mandioca com ampla cobertura genômica. Ademais, até o presente momento, 86.310 sequências expressas (Expressed Sequence Tag – ESTs) foram anotadas em bancos de dados como NCBI National Center for Biotechnology Information (www.ncbi.nlm.nih.gov) relacionadas a diversas rotas metabólicas (NCBI, 2014) importantes para o melhoramento da cultura e possibilitando o desenvolvimento de marcadores relacionados a genes candidatos. Com base em sequências expressas podemos citar o desenvolvimento de microssatélites (LOKKO et al., 2007) e SNPs (Single Nucleotide Polymorphism) (FERGUSON et al., 2012) relacionados à tolerância à seca; e a mineração de regiões contendo microssatélites em mandioca realizadas por Tangphatsornruang et al. (2008), Raji et al. (2009) e Zou et al. (2011) em bibliotecas de ESTs com uso de ferramentas da bioinformática. Partindo dessa estratégia, a obtenção de marcadores possui um menor custo, pode ser feita de maneira rápida e com seleção prévia dos iniciadores alvo em regiões que apresentam maior polimorfismo. Neste sentido, o desenvolvimento de marcadores relacionados a genes candidatos é proposto pela técnica Target Region Amplification Polymorphism - TRAP (HU e VICK, 2003), até então não relatada para a cultura da mandioca.

Na cultura da mandioca, os marcadores moleculares também têm sido utilizados na Seleção Assistida por Marcadores moleculares (SAM), sobretudo para a seleção de genótipos resistentes ao vírus do mosaico africano (OKOGBENIN et

al., 2007, 2012; RIBEIRO et al., 2012, RABBI et al., 2014) e ao ácaro verde (BLAIR et al., 2007). Marcadores utilizados na seleção assistida devem estar próximos à região de interesse para maior acurácia e minimização da possibilidade de ocorrência de falsos positivos por recombinação (COLLARD e MACKILL, 2008). Como o próprio nome sugere, a SAM consiste na seleção de genótipos com características de interesse para o melhoramento, de forma indireta com uso de marcadores moleculares. Ainda permite a piramidação de genes, onde se busca concentrar em um único genótipo, diferentes características de interesse.

Viroses da mandioca

No Brasil, as viroses de maior expressão na cultura da mandioca são o vírus do mosaico das nervuras (*Cassava vein mosaic virus*), mosaico comum (*Cassava common mosaic virus*) e o couro de sapo (*Cassava frogskin disease*). O mosaico comum é transmitido pelas estacas utilizadas na reprodução comercial da espécie ou por inoculação mecânica do vírus (CALVERT et al., 1996). O controle pode ser feito com a eliminação das plantas com sintomas da doença. Em relação ao mosaico das nervuras, este ocorre principalmente nas regiões semiárido do nordeste brasileiro com sintomas esporádicos e geralmente menos aparentes no final do ciclo de crescimento (CALVERT e THRESH, 2002) ambos com impactos pouco expressivos na produtividade da cultura. Em contrapartida, o couro de sapo pode causar perdas de 50% a 100% na produção agravado pela não ocorrência de sintomas na parte aérea o que dificulta o diagnóstico precoce e o controle da virose. Plantas afetadas pelo couro de sapo apresentam-se com sintomas hiperplásticos tipo verrugose tornado as raízes finas com zona cortical grossa, quebradiça, enrugada e fendas retículo-alveolares (POLTRONIERI et al., 1999).

No continente africano e asiático o complexo de vírus conhecido como CMD (Cassava Mosaic Disease) provocou perdas de até 100% da produção de mandioca (THRESH et al., 1994) sendo a virose de maior importância nessa região. O mosaico africano é uma virose endêmica provocada por várias espécies de Cassava mosaic geminiviruses - (CMGs) (família Geminiviridae: Gênero: Begomovirus) e algumas novas variantes que surgem por recombinação (LEGG e FAUQUET 2004; BULL et al., 2006; TIENDRÉBÉOGO et al., 2012). Os CMGs têm como centro de diversidade a África Ocidental (TIENDRÉBÉOGO et al., 2012) e suas principais espécies incluem: African cassava mosaic virus – ACMV, East African cassava mosaic virus –

EACMV, East African cassava mosaic Cameroon virus – EACMCV, East African cassava mosaic Kenya virus – EACMKV, East African cassava mosaic Malawi virus – EACMMV, East African cassava mosaic Zanzibar virus – EACMZV, South African cassava mosaic virus – SaCMV, Indian cassava mosaic virus – ICMV, Sri Lankan cassava mosaic virus – SLCMV (LEGG e FAUQUET 2004; BULL et al., 2006) ainda não relatados nas Américas (Figura 2) apesar da presença do inseto vetor (HERRERA CAMPO et al., 2011). Transmitida pela mosca branca Bemisia tabaci (Genn.) biótipo B e por material vegetativo infectado (DE BRUYN et al., 2012), o CMD é caracterizado por sintomas típicos de mosaico (STOREY e NICHOLS, 1938) apesar de variações por fatores ambientais (GIBSON, 1994) com acentuada diminuição do crescimento e a produção da planta (THRESH et al., 1994) (Figura 3).

A utilização de plantas resistentes é uma estratégia em longo prazo que minimiza os efeitos do ataque de patógenos. Variedades resistentes ao CMD, por exemplo, manifestam os sintomas com menor gravidade quando comparadas às suscetíveis (OKOGBENIN et al., 2007; RIBEIRO et al., 2012). Ainda no que se diz a respeito ao mosaico africano, as condições favoráveis ao estabelecimento da virose no Brasil (HERRERA CAMPO et al., 2011) e restrições quarentenárias impedem a seleção de genótipos resistentes na presença do patógeno no país. No entanto, existem marcas moleculares que flanqueiam os genes que conferem resistência ao patógeno, a exemplo do *CMD1* (FARGETTE et al., 1996), *CMD2* (AKANO et al., 2002) e *CMD3* (OKOGBENIN et al., 2012) tornando possível a seleção assistida na ausência do patógeno.

Em nível internacional, diversas fontes de resistência ao mosaico africano (*Cassava Mosaic Disease - CMD*) são mantidos pelo ITTA sob a denominação de série *Tropical Manihot Series* (TMS) derivadas do cruzamento entre variedades de *M. esculenta* e *Manihot Glaziovii* Muel (Arg.) (JENNINGS, 1976) e a série *Tropical Manihot Esculenta* (TME) que reúne diversas variedades locais de *M. esculenta*.

Desta forma, o trabalho teve como objetivo geral desenvolver novas ferramentas moleculares para detecção de polimorfismo molecular na cultura da mandioca e utilizar a seleção assistida por marcadores moleculares para identificar potenciais fontes de resistência ao vírus do mosaico africano.

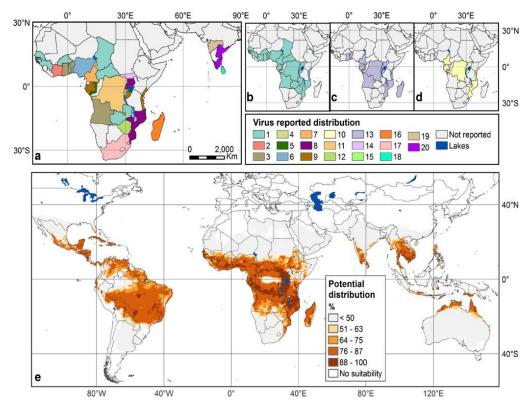
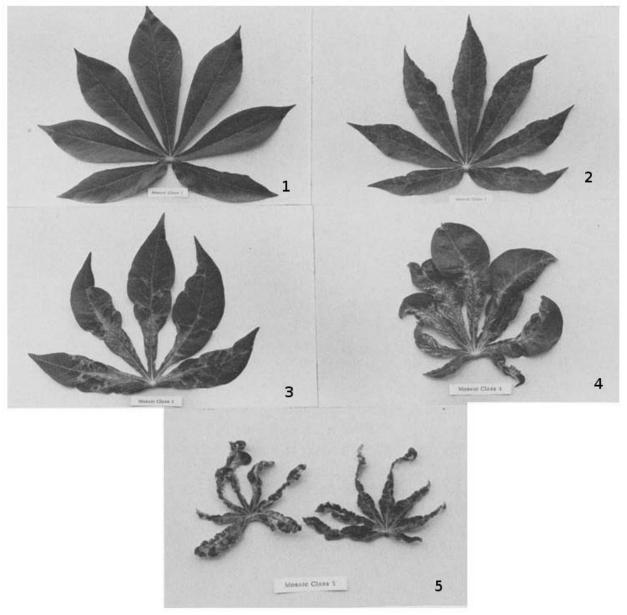



Figura 2: Distribuição relatada e potencial do Cassava Mosaic Disease - CMD. a) Distribuição conhecida do vírus na África e Ásia; as cores representam: 1 – African Cassava Mosaic Virus (ACMV); 2. ACMV e East African Cassava Mosaic Cameroon Virus (EACMCV); 3 - ACMV e EACMV; 4 - ACMV e EACMV-UG; 5 - ACMV, EACMV-UG e East African Cassava Mosaic Virus - 2 Uganda strain (EACMV-UG2); 6 - ACMV, EACMV e EACMCV; 7 - ACMV, EACMV, EACMCV e EACMV-UG; 8 -ACMV, EACMV e EACMV-UG; 9 - ACMV, EACMV, EACMV-UG e EACMV-UG2; 10 - EACMV-UG; 11 - ACMV, EACMV, EACMV-UG e South African Cassava Mosaic Virus (SACMV); 12 - ACMV, EACMV, SACMV; 13 - EACMV; 14 - EACMV-UG2; 15 - EACMV-UG e EACMV-UG2; 16 - EACMV e SACMV; 17- SACMV; 18 - SriLankan Cassava Mosaic Virus (SLCMV); 19 - Indian Cassava Mosaic Virus (ICMV); 20 -SLCMV e ICMV. Mapas b, c e d mostram distribuição conhecida de grande extensão de: b) African Cassava Mosaic Virus (ACMV); c) East African Cassava Mosaic Virus (EACMV), d) East African Cassava Mosaic Virus-Uganda strain (EACMV-UG). e) distribuição potencial do CMD: valores são classificados em cinco categorias entre 50 e 100% conforme legenda.

Fonte: Herrera Campo et al. (2011).

Figura 3: Escala de severidade apresentando sintomas do mosaico africano de um (sem sintomas) a cinco (sintomas severos).

Fonte: Hahn et al. (1980).

REFERÊNCIAS

AGARWAL, M.; SHRIVASTAVA, N.; PADH, H. Advances in molecular marker techniques and their applications in plant sciences. **Plant Cell Reports**, v.27, p.617-631, 2008.

AKANO, A. O.; DIXON, A.; MBA, C.; BARRERA, E.; FREGENE, M. Genetic mapping of a dominant gene conferring resistance to cassava mosaic disease. **Theoretical and Applied Genetics**, v.105, p.521-525, 2002.

- ANDERSEN, J. R.; LUBBERSTEDT, T. Functional markers in plants. **Trends in Plant Science**,v.8, p.554-560, 2003.
- ARAÚJO, J. C.; ALMEIDA, C. O. Inventário de variedades de mandioca lançadas pela Embrapa Mandioca e Fruticultura no período de 1996 a 2009. **Circular Técnica 107 CNPMF**, Cruz das Almas, 2013.
- BANG, T. C. de; RAJI, A. A.; INGELBRECHT, I. L. A multiplex microsatellite marker kit for diversity assessment of large Cassava (*Manihot esculenta* Crantz) germplasm collections. **Plant Molecular Biology Reporter**, v.29, p.655-662, 2011.
- BLAIR, M.; FREGENE, M.; BEEBE, S.; CEBALLOS, H. Marker-assisted breeding in common beans and cassava. In: **Marker-assisted selection: Current status and future perspectives in crops, livestock, forestry and fish.** Food and Agriculture Organisation of the United Nations (FAO), Rome, p.81-115, 2007.
- BORGES, M. de F.; FUKUDA, W.M.G.; ROSSETTI, A.G. Avaliação de variedades de mandioca para consumo humano. **Pesquisa Agropecuária Brasileira**, v. 37, p.1559-1565, 2002.
- BULL, S. E.; BRIDDON, R. W.; SSERUBOMBWE, W. S.; NGUGI, K.; MARKHAM, P. G.; STANLEY, J. Genetic diversity and phylogeography of cassava mosaic viruses in Kenya. **Journal of General Virology**,v.87, p.3053-3065, 2006.
- CALVERT, L. A.; CUERVO IBÁÑEZ, M; OSPINA, M. D.; FAUQUET, C. M.; RAMÍREZ, B. C. Characterization of cassava common mosaic virus and a defective RNA species **Journal of General Virology**, v.77, p.525-530, 1996.
- CALVERT, L. A.; THRESH J. M. Virus and virus diseases of Cassava In: Hillocks, R. J. Thresh, J. M. Belloti, A. **Cassava biology and utilization.** CABI Publishing. p.237-260, 2002.
- CARVALHO, L. J. C. B; SCHAAL, B. A. Assessing genetic diversity in the cassava (*Manihot esculenta* Crantz) germplasm collection in Brazil using PCR-based markers. **Euphytica**, v.120, p.133-142, 2001.
- CARVALHO, R. de; GUERRA, M. Cytogenetics of *Manihot esculenta* Crantz (cassava) and eight related species. **Hereditas**, v.136, p.159-168, 2002.
- CEBALLOS, H.; IGLESIAS, C.A.; PÉREZ, J.C.; DIXON, A.G.O. Cassava breeding: opportunities and challenges. **Plant Molecular Biology**, v.56, p.503-516, 2004.
- CEBALLOS, H.; KULAKOW, P.; HERSHEY, C. Cassava breeding: Current status, bottlenecks and the potential of biotechnology tools. **Tropical Plant Biology**, v.5, p.73-87, 2012.

- CHACÓN, J.; MADRIÑÁN, S.; DEBOUCK, D.; RODRIGUEZ, F.; TOHME, J. Phylogenetic patterns in the genus *Manihot* (Euphorbiaceae) inferred from analyses of nuclear and chloroplast DNA regions. **Molecular Phylogenetics and Evolution**, v. 49, p.260-267, 2008.
- CHAVARRIAGA-AGUIRRE, P.; MAYA, M. M.; TOHME, J.; DUQUE, M. C.; IGLESIAS, C.; BONIERBALE, M. W.; KRESOVICH, S.; KOCHERT, G. Using microsatellites, isozymes and AFLPs to evaluate genetic diversity and redundancy in the cassava core collection and to assess the usefulness of DNA-based markers to maintain germplasm collections. **Molecular Breeding**, v.5, p.263-273, 1999.
- CIAT Centro Internacional de Agricultura Tropical. Programa de recursos Genéticos. Colección de Yuca. Disponível em: http://isa.ciat.cgiar.org/urg/cassavacollection.do Acesso em: Jul. 2014.
- COLLARD, B. C.; MACKILL, D. J. Marker-assisted selection: an approach for precision plant breeding in the twenty-first century. **Philosophical Transactions of the Royal Society of London**, v.363, p.557-572, 2008.
- COLOMBO, C.; SECOND, G.; CHARRIER, A. Diversity within American cassava germplasm based on RAPD markers. **Genetics and Molecular Biology**, v.23, p.189-199, 2000.
- CORDEIRO, I.; SECCO, R.; SILVA, M.J. da; SODRÉ, R.C.; MARTINS, M.L.L. *Manihot* In: **Lista de Espécies da Flora do Brasil**. Jardim Botânico do Rio de Janeiro. Disponível em: http://floradobrasil.jbrj.gov.br/jabot/floradobrasil/FB17591. Acesso em: 27 Ago. 2014.
- COSTA, M. R.; CARDOSO, E. R; OHAZE, M. M. M. Similaridade genética de cultivares de Mandioca (*Manihot esculenta*) por meio de marcadores RAPD. **Ciência e Agrotecnologia**, v.27, p.158-164, 2003.
- DE BRUYN, A.; VILLEMOT, J.; LEFEUVRE, P.; VILLAR, E.; HOAREAU, M.; HARIMALALA, M.; ABDOUL-KARIME, A.L; ABDOU-CHAKOUR, C.; REYNAUD, B.; HARKINS, G.W.; VARSANI, A.; MARTIN, D. P.; LETT, J. East African cassava mosaic-like viruses from Africa to Indian ocean islands: molecular diversity, evolutionary history and geographical dissemination of a bipartite begomovirus. **Evolutionary Biology**, v.12, p.228, 2012.
- EL-SHARKAWY, M. A.; COCK, J. H.; PORTO, M. C. M. Características fotossintéticas da mandioca (*Manihot esculenta* Crantz). **Revista Brasileira de Fisiologia Vegetal**, v.1, p.143-154, 1989.
- EMBRAPA Empresa Brasileira de Pesquisa Agropecuária. **Portal Alelo Recursos Genéticos**. Disponível em: http://mwpin026.cenargen.embrapa.br:8080/portalalelo/index.php/portal/colecoes/vegetal/raizes-e-tuberculos Acesso em: Jul. 2014.

- **FAO** Food and Agriculture Organization of the United Nations. FAOSTAT. Disponível em: http://faostat.fao.org/site/339/default.aspx Acesso em: Fev. 2014.
- FARGETTE, D.; COLON, L.T.; BOUVEAU, R.; FAUQUET, C. Components of resistance of cassava to African cassava mosaic virus. **European Journal of Plant Pathology**, v.102, p.645-654, 1996.
- FELIPE, F. I.; ALVES, L.R.A.; VIEIRA, R.M. Fécula de mandioca. Produção na Tailândia versus Brasil. **Agroanalysis**, p.28, 2013.
- FERGUSON, M. E.; HEARNE, S. J; CLOSE, T. J; WANAMAKER, S; MOSKAL, W. A; TOWN, C. D; DE YOUNG, J; MARRI, P. R; RABBI, I. Y. de; VILLIERS, E. P. Identification, validation and high-throughput genotyping of transcribed gene SNPs in cassava. **Theoretical and Applied Genetics**, v.124, p.685-695, 2012.
- FREGENE, M.; ANGEL, F.; GOMEZ, R.; RODRIGUEZ, F.; CHAVARRIAGA, P.; ROCA, W.; TOHME, J. BONIERBALE, M. A molecular genetic map of cassava (*Manihot esculenta* Crantz). **Theoretical and Applied Genetics**, v.95, p.431-441, 1997.
- FREGENE, M.; BERNAL, A.; DUQUE, M.; DIXON, A.; TOHME, J. AFLP analysis of African cassava (*Manihot esculenta* Crantz) germplasm resistant to the cassava mosaic disease (CMD). **Theoretical and Applied Genetics**, v.100, p.678-685, 2000.
- FUKUDA, W.M.G., CAVALCANTI, J.; FUKUDA, C.; COSTA, I.R.S. Variabilidade genética e melhoramento da mandioca (*Manihot esculenta* Crantz) In: **Recursos Genéticos e Melhoramento de Plantas para o Nordeste Brasileiro.** (on line). Versão 1.0. Petrolina-PE: Embrapa Semiárido/Brasília-DF: Embrapa Recursos Genéticos e Biotecnologia, nov., 1999. Disponível em: http://www.cpatsa.embrapa.br/catalogo/livrorg/temas.html Acesso em: Fev. 2014.
- GIBSON, R. W. Long-term absence of symptoms in heattreated African cassava mosaic geminivirus-infected resistant cassava plants. **Tropical Science**, v.34, p.154-158, 1994.
- GRANER, E. A. Notas sobre florescimento e frutificação da mandioca. **Bragantia**, v.2, p.1-12, 1942.
- HAHN, S. K.; TERRY, E. R.; LEUSCHNER, K. Breeding cassava for resistance to cassava mosaic disease. **Euphytica**, v.29, p.673-683, 1980.
- HERRERA CAMPO, B. V.; HYMAN, G.; BELLOTTI, A. Threats to cassava production: known and potential geographic distribution of four key biotic constraints. **Food Security**, v.3, p.329–345, 2011.

- HU, J.; VICK, B. A. Target region amplification polymorphism: a novel marker technique for plant genotyping. **Plant Molecular Biology Reporter**, v.21, p.289-294, 2003.
- IBGE Instituto Brasileiro de Geografia e Estatística. **Produção Agrícola**. Disponível em:<ftp://ftp.ibge.gov.br/Producao_Agricola/Levantamento_Sistematico_da_Produca o_Agricola_%5Bmensal%5D/Comentarios/lspa_201407comentarios.pdf> Acesso em Ag. 2014a.
- IBGE Instituto Brasileiro de Geografia e Estatística. SIDRA Sistema IBGE de Recuperação Automática. Disponível em: ">http://www.sidra.ibge.gov.br/bda/acervo/acervo9.asp?e=c&p=LA&z=t&o=26>">http://www.sidra.ibge.gov.br/bda/acervo/acervo9.asp?e=c&p=LA&z=t&o=26>">http://www.sidra.ibge.gov.br/bda/acervo/acervo9.asp?e=c&p=LA&z=t&o=26>">http://www.sidra.ibge.gov.br/bda/acervo/acervo9.asp?e=c&p=LA&z=t&o=26>">http://www.sidra.ibge.gov.br/bda/acervo/acervo9.asp?e=c&p=LA&z=t&o=26>">http://www.sidra.ibge.gov.br/bda/acervo/acervo9.asp?e=c&p=LA&z=t&o=26>">http://www.sidra.ibge.gov.br/bda/acervo/acervo9.asp?e=c&p=LA&z=t&o=26>">http://www.sidra.ibge.gov.br/bda/acervo/acervo9.asp?e=c&p=LA&z=t&o=26>">http://www.sidra.ibge.gov.br/bda/acervo/acervo9.asp?e=c&p=LA&z=t&o=26>">http://www.sidra.ibge.gov.br/bda/acervo/acervo9.asp?e=c&p=LA&z=t&o=26>">http://www.sidra.ibge.gov.br/bda/acervo/acervo9.asp?e=c&p=LA&z=t&o=26>">http://www.sidra.ibge.gov.br/bda/acervo/acervo9.asp?e=c&p=LA&z=t&o=26>">http://www.sidra.ibge.gov.br/bda/acervo/acervo9.asp?e=c&p=LA&z=t&o=26>">http://www.sidra.ibge.gov.br/bda/acervo/acervo9.asp?e=c&p=LA&z=t&o=26>">http://www.sidra.ibge.gov.br/bda/acervo/acervo9.asp?e=c&p=LA&z=t&o=26>">http://www.sidra.ibge.gov.br/bda/acervo/acervo9.asp?e=c&p=LA&z=t&o=26>">http://www.sidra.ibge.gov.br/bda/acervo/acervo9.asp?e=c&p=LA&z=t&o=26>">http://www.sidra.ibge.gov.br/bda/acervo/acervo9.asp?e=c&p=LA&z=t&o=26>">http://www.sidra.ibge.gov.br/bda/acervo/acervo9.asp?e=c&p=LA&z=t&o=26>">http://www.sidra.ibge.gov.br/bda/acervo/acervo9.asp?e=c&p=LA&z=t&o=26>">http://www.sidra.ibge.gov.br/bda/acervo/acervo9.asp?e=c&p=LA&z=t&o=26>">http://www.sidra.ibge.gov.br/bda/acervo/acervo9.asp?e=c&p=LA&z=t&o=26>">http://www.sidra.ibge.gov.br/bda/acervo/acervo9.asp?e=c&p=LA&z=t&o=26>">http://www.sidra.ibge.gov.br/bda/acervo/acervo9.asp?e=c&p=LA&z=t&o=26>">http://www.sidra.ibge.gov.br/bda/acervo/acervo/acervo/acervo/acervo/acervo/acervo/acervo/acervo/acervo/acervo/acervo/a
- IITA Instituto Internacional de Agricultura Tropical. **IITA Accessions 2. Cassava collection.** Disponível em: http://my.iita.org/accession2/collection.jspx?id=9 Acesso em: Jul. 2014.
- JENNINGS, D. L. Breeding for resistance to African cassava mosaic disease: progress and prospects. In: Interdisciplinary Workshop. IDRC, Muguga (Kenya), 1976.
- LEGG, J. P.; FAUQUET, C. M. Cassava mosaic geminiviruses in Africa. **Plant Molecular Biology**, v.56, p.585-599, 2004.
- LOKKO, Y.; ANDERSON, J. V.; RUDD, S.; RAJI, A.; HORVATH, D.; MIKEL, M.A.; KIM, R.; LIU, L.; HERNANDEZ, A.; DIXON, A. G. O.; INGELBRECHT, I. L. Characterization of an 18,166 EST dataset for cassava (*Manihot esculenta* Crantz) enriched for drought-responsive genes. **Plant Cell Reporter**, v.26, p.1605-1618, 2007.
- MARMEY, P.; BEECHING, J.; HAMON, S.; CHARRIER, A. Evaluation of cassava (*Manihot esculenta* Crantz.) germplasm using RAPD markers. **Euphytica**, v.74, p.203-209, 1994.
- MBA, R.E.C.; STEPHENSON, P.; EDWARDS, K.; MELZER, S.; NKUMBIRA, J.; GULLBERG, U.; APEL, K.; GALE, M.; TOHME, J.; FREGENE, M. Simple sequence repeat (SSR) markers survey of the cassava (*Manihot esculenta* Crantz) genome: towards an SSR-based molecular genetic map of cassava. **Theoretical and Applied Genetics**, v.102, p.21-31, 2001.
- MEZETTE, T. F.; BLUMER, C. G.; VEASEY, E. A. Morphological and molecular diversity among cassava genotypes. **Pesquisa Agropecuária Brasileira**, v.48, p.510-518, 2013.

- MOURA, E. F.; FARIAS NETO, J. T. de.; SAMPAIO, J. E.; SILVA, D. T. da.; RAMALHO, G. F. Identification of duplicates of cassava accessions sampled on the North Region of Brazil using microsatellite markers. **Acta Amazonica**, v.43, p.461-468, 2013.
- MÜHLEN, G. C.; MARTINS, P. S.; ANDO, A. Variabilidade genética de etnovariedades de mandioca, avaliada por marcadores de DNA. **Scientia Agricola**, v.57, p.319-328, 2000.
- NCBI National Center for Biotechnology Information. Disponível em: Acesso em: Ago. 2014.">http://www.ncbi.nlm.nih.gov/nucest/?term=manihot+esculenta>Acesso em: Ago. 2014.
- OKOGBENIN, E.; EGESI, C. N.; OLASANMI, B.; OGUNDAPO, O.; KAHYA, S.; HURTADO, P.; MARIN, J.; AKINBO, O.; MBA, C.; GOMEZ, H.; DE VICENTE, C.; BAIYERI, S.; UGURU, M.; EWA, F.; FREGENE, M. Molecular marker analysis and validation of resistance to cassava mosaic disease in elite cassava genotypes in Nigeria. **Crop Science**, v.52, p.2576-2586, 2012.
- OKOGBENIN, E.; MARIN, J.; FREGENE, M. An SSR-based molecular genetic map of cassava. **Euphytica**, v.147, p.433-440, 2006.
- OKOGBENIN, E.; PORTO, M. C. M.; EGESI, C.; MBA, C.; OSPINOSA, E.; SANTOS, L. G.; OSPINA, C.; MARIN, J.; BARERA, E.; GUTIERREZ, J.; EKANAYAKE, I.; IGLESIAS, C.; FREGENE, M. Marker aided introgression of CMD resistance in Latin American germplasm for genetic improvement of cassava in Africa. **Crop Science**, v.47, p.1895-1904, 2007.
- OLSEN, K. M.; SCHAAL, B. A. Microsatellite variation in cassava (*Manihot esculenta*, Euphorbiaceae) and its wild relatives: further evidence for a southern Amazonian origin of domestication. **American Journal of Botany**, v.88, p.131-142, 2001.
- ORLANDIN, P.; LIMA, L. R. Sinopse do gênero *Manihot* Mill. (*Euphorbiaceae*) no Estado de São Paulo, Brasil. **Hoehnea**, v.41, p.51-60, 2014.
- POLTRONIERI, L. S.; TRINDADE, D. R.; CARDOSO, E. M. R.; AÍOUQUERQUE, F. C. de; MEISSNER FILHO, P. E. J. Couro de sapo em mandioca (*Manlhot esculenta* Crantz) no Estado do Pará. **Comunicado Técnico Embrapa**, v.6, p.1-2, 1999.
- PROCHNIK, S., MARRI, P. R., DESANY, B., RABINOWICZ, P. D., KODIRA, C., MOHIUDDIN, M., RODRIGUEZ, F., FAUQUET, C., TOHME, J., HARKINS, T., ROKHSAR, D. S., ROUNSLEY, S. The cassava genome: Current progress, future directions. **Tropical Plant Biology**, v.5, p.88–94, 2012.
- QUEIRÓZ, M. A. Os recursos genéticos vegetais e os melhoristas de plantas In: **Recursos Genéticos e Melhoramento de Plantas para o Nordeste Brasileiro.** (on line). Versão 1.0. Petrolina-PE: Embrapa Semiárido/Brasília-DF: Embrapa Recursos

- Genéticos e Biotecnologia, nov., 1999. Disponível em: .html">http://www.cpatsa.embrapa.br/catalogo/livrorg/temas>.html Acesso em: Fev. 2014.
- RABBI, I. Y.; HAMBLIN M. T.; KUMAR, P. L.; GEDIL, M. A.; IKPAN, A. S.; JEAN-LUC JANNINK; KULAKOW, P. A. High-resolution mapping of resistance to cassava mosaic geminiviruses in cassava using genotyping-by-sequencing and its implications for breeding. **Virus Research**, v.186, p.87-96, 2014.
- RAJI, A. A.; ANDERSON, J.V.; KOLADE, O. A.; UGWU, C. D.; DIXON, A. G. O.; INGELBRECHT, I. L. Gene-based microsatellites for cassava (*Manihot esculenta* Crantz): prevalence, polymorphisms, and cross-taxa utility. **Plant Biology**, v.9, p.1-11, 2009.
- RIBEIRO, P. F.; AKROMAH, R.; MANU-ADUENING, J. Using marker assisted selection to hasten screening of cassava cultivars developed through introgression of Cassava Mosaic Disease (CMD) resistance into cassava landraces in Ghana. **Journal of Agricultural Science and Technology**, v.2, p.74-80, 2012.
- ROA, A. C.; MAYA, M. M.; DUQUE, M.C.; TOHME. J.; ALLEM, A. C.; BONIERBALE, M. W. AFLP analysis of relationships among cassava and other *Manihot* species. **Theoretical and Applied Genetics**, .95, p.741-750, 1997.
- ROGERS, D. J. Some botanical and ethnological considerations of *Manihot esculenta* **Economic Botany**, v.19, p.369-377, 1965.
- SANTANA, A C. de (COORD.); CARVALHO, D. F.; MENDES, F. A. T.; FILGUEIRAS, G. C.; BOTELHO, M. DO N.; KITABAYASHI, R. T. Identificação e caracterização de arranjos produtivos locais nos Estados do Pará e do Amapá, no período 2000 a 2005: orientações para políticas de desenvolvimento local. Belém: UNAMA, p. 171, 2010.
- SARDOS, J.; MCKEY, D.; DUVAL, M. F.; MALAPA, R.; NOYER, J. L.; LEBOT, V. Evolution of cassava (*Manihot esculenta* Crantz) after recent introduction into a South Pacific Island system: the contribution of sex to the diversification of a clonally propagated crop. **Genome**, v.51, p.912-921, 2008.
- SILVA, K. V. P. da; ALVES, A. A. da C.; MARTINS, M. I. G.; MELO, C. A. F. de; CARVALHO, R. de. Variabilidade genética entre acessos do gênero *Manihot* por meio de marcadores moleculares ISSR. **Pesquisa Agropecuária Brasileira**, v.46, p.1082-1088, 2011.
- SILVA, R.M. DA; BANDEL, G.; FARALDO, M.I.F.; MARTINS, P.S. Biologia reprodutiva de etnovariedades de mandioca. **Scientia Agricola**, v.58, p.101-107, 2001.
- SIQUEIRA, M. V. B. M.; QUEIROZ-SILVA, J. R.; BRESSAN, E. A.; BORGES, A.; PEREIRA, K. J. C.; PINTO J G.; VEASEY, E. A. Genetic characterization of cassava

(*Manihot esculenta*) landraces in Brazil assessed with simple sequence repeats. **Genetics and Molecular Biology**, v.32, p.104-110, 2009.

STOREY, H. H.; NICHOLS, R. F. W. Studies of the Mosaic Diseases of Cassava. **Annals of Applied Biology**, v.25, p.790-806, 1938.

TANGPHATSORNRUANG, S.; SRAPHET, S.; SINGH, R.; OKOGBENIN, E.; FREGENE, M.; TRIWITAYAKORN, K. Development of polymorphic markers from expressed sequence tags of *Manihot esculenta* Crantz. **Molecular Ecology Resources**, v.8, p.682-685, 2008.

THRESH, J. M.; FARGETTE, D.; OTIRN-NAPE, G. W. Effects of African cassava mosaic geminivirus on the yield of cassava. **Tropical Science**, v.34, p.26-42, 1994.

TIENDRÉBÉOGO, F.; PIERRE LEFEUVRE, P.; HOAREAU, M.; HARIMALALA, M. A.; DE BRUYN, A.; VILLEMOT, J.; TRAORÉ, V. S. E.; KONATÉ, G.; TRAORÉ, A. S.; NICOLAS BARRO, N.; REYNAUD, B.; TRAORÉ, O.; LETT, J. M. Evolution of African cassava mosaic virus by recombination between bipartite and monopartite begomoviruses. **Virology Journal**, v.9, p.67, 2012.

VIEIRA, E. A.; FREITAS FILHO, J. de.; FALEIRO, F. G.; BELLON, G.; FONSECA, K. G. da; CARVALHO, L. J. C. B.; SILVA, M. S. Caracterização molecular e variabilidade genética de acessos elite de mandioca para fins industriais. **Ciência Rural Santa Maria**, v.40, p.2467-2471, 2010.

WHANKAEW, S.; POOPEAR, S.; KANJANAWATTANAWONG, S.; TANGPHATSORNRUANG, S.; BOONSENG, O.; LIGHTFOOT, D. A.; TRIWITAYAKORN, K. A genome scan for quantitative trait loci affecting cyanogenic potential of cassava root in an outbred population. **BMC Genomics**, v.12, p.266, 2011.

ZACARIAS, A. M.; BOTHA, A. M.; LABUSCHAGNE, M. T.; BENESI, I. R. M. Characterization and genetic distance analysis of cassava (*Manihot esculenta* Crantz) germplasm from Mozambique using RAPD fingerprinting. **Euphytica**, v.138, p.49-53, 2004.

ZOU, M.; XIA, Z.; LING, P.; ZHANG, Y.; CHEN, X.; WEI, Z.; BO, W.; WANG, W. Mining EST-Derived SSR markers to assess genetic diversity in cassava (*Manihot esculenta* Crantz). **Plant Molecular Biology**, v.29, p.961-971, 2011.

CAPÍTULO 1

DESENVOLVIMENTO DE MARCADORES TRAP (Target Region Amplification Polymorphism) COMO NOVA FERRAMENTA MOLECULAR PARA ANÁLISES GENÉTICAS NA CULTURA DA MANDIOCA³

³O artigo será submetido ao comitê editorial do periódico científico Plant Molecular Biology Reporter

DESENVOLVIMENTO DE MARCADORES TRAP (*Target Region Amplification Polymorphism*) COMO NOVA FERRAMENTA MOLECULAR PARA ANÁLISES GENÉTICAS NA CULTURA DA MANDIOCA

Resumo - A mandioca (Manihot esculenta Crantz) carece de estudos moleculares para uso no melhoramento genético e na manutenção de bancos de germoplasma. Neste trabalho, objetivou-se desenvolver e validar iniciadores do tipo TRAP (Target Region Amplification Polymorphism) para a mandioca bem como analisar o seu potencial de estruturação da diversidade genética da espécie. Inicialmente foram avaliadas 396 combinações (99 iniciadores fixos versus quatro arbitrários) com 64% das combinações apresentando bom padrão de amplificação e polimorfismo. As 69 combinações TRAP mais polimórficas foram utilizadas na caracterização de 46 genótipos de mandioca, na qual foram identificados 606 alelos (variação de 3 a 18, com média de 8,8 alelos por combinação). O conteúdo de informação polimórfica (PIC) variou de 0,03 a 0,38 (média de 0,23), embora 31 combinações apresentem PIC>0,25. A capacidade de resolução dos marcadores (Rp) variou de 0,10 a 6,30 (média de 3,21). Observou-se que os iniciadores relacionados à biossíntese de amido, carotenoides, compostos cianogênicos, deterioração fisiológica pós-colheita, formação de raízes tuberosas e respostas de defesa foram os mais polimórficos (>70% de fragmentos polimórficos, PIC >0,25 e Rp >3,21). Foram identificados 37 alelos privados em 20 genótipos. O agrupamento realizado com base em inferência Bayesiana (STRUCTURE) revelou a presença de dois grupos principais (K=2) e quatro subgrupos (K=4). A diferenciação dos agrupamentos pela análise de variância molecular (AMOVA) evidenciou que a maior parte da variação genética está dentro dos grupos, porém com uma diferença significativa entre os grupos (PhiPT = 0,139 para K=2 e 0,138 para K=4). Portanto, os iniciadores TRAP, possuem um alto polimorfismo para serem utilizados como ferramenta molecular na cultura da mandioca, além da associação com regiões gênicas que podem aumentar as chances de obtenção de marcas funcionais.

Palavras chaves: sequências expressas, variabilidade genética, *Manihot esculenta* Crantz, marcador molecular.

DEVELOPMENT OF TRAP (Target Region Amplification Polymorphism) AS NEW TOOL FOR MOLECULAR GENETIC ANALYSIS IN CASSAVA

Abstract - Cassava (Manihot esculenta Crantz) lacks molecular studies to be used in breeding and germplasm banks maintenance. This work aimed to develop and validate TRAP markers (Target Region Amplification Polymorphism) for cassava and evaluate its potential for structuring the genetic diversity of this specie. Preliminary analyzes with 396 combinations (99 fixed versus 4 arbitrary primers), showed 64% of combinations with good amplification pattern and polymorphism. The 69 most polymorphic TRAP combinations were used for characterizating 46 cassava genotypes, in which 606 alleles (range 3-18, with a mean of 8.8 alleles per combination) were identified. The polymorphic information content (PIC) ranged from 0.03 to 0.38 (average 0.23), while 31 combinations showed PIC> 0.25. The resolving power (Rp) parameter ranged from 0.10 to 6.30 (average 3.21). It was observed that the primers related to the starch and carotenoids biosynthesis, cyanogenic compounds, post-harvest physiological deterioration, root formation and defense responses were the most polymorphic (> 70% of polymorphic fragments, PIC> 0.25 and Rp > 3.21). 37 private alleles were identified in 20 accessions. Bayesian clustering as implemented in STRUCTURE revealed the presence of two major clusters (K = 2) and four sub cluster (K = 4). The group differentiation based on molecular variance analysis (AMOVA) showed that most of the genetic variation is within groups, but with a significant difference between groups (PhiPT = 0.139 to K = 2 and 0.138 to K = 4) Therefore, TRAP primers have a high polymorphism to be used as a molecular tool in cassava, besides the association with genetic regions that may increase the chances in obtaining functional markers.

Key words: Molecular marker, Genetic diversity, Cassava, Expressed Sequence.

INTRODUÇÃO

De acordo com dados da Food and Agriculture Organization (FAO 2014) mais de 67% da produção mundial (186 milhões de toneladas) de mandioca (Manihot esculenta Crantz) está concentrada em oito países: Nigéria (54 milhões de toneladas), Tailândia (30,2 milhões de toneladas), Indonésia (23,9 milhões de toneladas), Brasil (21,2 milhões de toneladas), República Democrática do Congo (16,5 milhões de toneladas), Angola (16,4 milhões), Gana (14,5 milhões), e Moçambique (10 milhões). Isto demonstra que embora a mandioca seja uma espécie nativa da região amazônica brasileira, seu cultivo se expandiu pelo mundo, sendo alimento básico para mais de 500 milhões de pessoas. Nos últimos 10 anos (2003 a 2013) houve um crescente aumento na produtividade média da cultura a nível mundial (de 10,76 a 13,91 t ha⁻¹) enquanto a produtividade brasileira continuou estável oscilando de 13,44 a 14,52 t ha⁻¹ (FAO 2014). Diversos fatores ainda contribuem para esta baixa produtividade, a exemplo do uso de técnicas de cultivo inadequadas e uso de variedades com reduzido potencial de produção. Por outro lado, como centro de origem (Olsen e Schaal 2001), o Brasil possui centenas de variedades locais que podem ser utilizadas para geração de novas variedades com características agronômicas mais interessantes para sistemas de cultivo mais produtivos.

Nos últimos anos, avanços metodológicos importantes têm sido obtidos por meio da análise de polimorfismos de DNA, como técnica auxiliar aos programas de melhoramento genético. Atualmente, os esforços estão voltados para o entendimento das relações entre genótipo e fenótipo, para que a seleção genética seja feita de forma mais rápida e eficiente. De modo geral, observa-se um grande avanço no conhecimento sobre a genética e melhoramento da cultura da mandioca, com base no desenvolvimento de novos recursos computacionais, modelos estatísticos e na própria genética quantitativa e molecular. Entretanto, é preciso avançar em duas áreas estratégicas para garantir avanços mais significativos no melhoramento da mandioca, i.e., 1) seleção baseada no genótipo dos indivíduos e 2) avaliação precoce e acurada das características de maior importância agronômica.

Em ambas as estratégias, os marcadores de DNA podem ser bastante úteis, seja na identificação de genótipos com características específicas (Aiemmaka et al. 2012), busca e associação de regiões genômicas a fenótipos de interesse de forma a permitir a aplicação da seleção assistida por marcadores (Blair et al. 2007),

melhoria da acurácia da avaliação genética ao incorporar dados de parentesco mais compreensivo e acurado (Rodríguez-Ramilo et al. 2007; Gowda et al. 2014), além de permitir a eliminação de alelos recessivos deletérios em populações de melhoramento.

Os marcadores moleculares também permitem mensurar o polimorfismo de um grande número de locos sem influência ambiental e com alto poder de discriminação. Por isso, diversos tipos de marcadores têm sido utilizados na cultura da mandioca, para auxiliar nos estudos de diversidade genética, filogenia, construção de mapas de ligação e mapeamento de QTL (Quantitative Trait Loci), a exemplo de RFLP - Restriction Fragment Length Polymorphism (Beeching et al. 1993), RAPD - Random Amplified Polymorphic DNA (Marmey et al. 1993; Fregene et al. 1997; Zacarias et al. 2004; Akinbo et al. 2007), AFLP - Amplified Fragment Length Polymorphism (Roa et al. 1997; Elias et al. 2000; Fregene et al. 2000; Chen et al. 2010; Kunkeaw et al. 2010), DArT - Diversity Array Technology (Xia et al. 2005), microssatélites (Fregene et al. 2003; Hurtado et al. 2008; Kunkeaw et al. 2010; Asare et al. 2011; Mezette et al. 2013; Pariyo et al. 2013) e SNP - Single Nucleotide Polymorphisms (Olsen 2004; Kawuki et al. 2009). Porém, a maioria destes marcadores está associada à loci aleatórios no genoma da mandioca, sem associação específica a regiões gênicas de interesse agronômico. Recentemente alguns marcadores moleculares foram desenvolvidos a partir de ESTs (Expressed Sequence Tags), a exemplo de microssatélites (Lokko et al. 2007; Raji et al. 2009a; Sraphet et al. 2011; Zou et al. 2011; Kunkeaw et al. 2011), SNP (Ferguson et al. 2012), ou combinação de ambos (Rabbi et al. 2012).

O uso de marcadores genômicos aleatórios contribui para elucidar baixas associações existentes entre genótipo e fenótipo, por isso, é preciso investir cada vez mais em marcadores associados a regiões expressas para melhorar a acurácia na predição de fenótipos. A técnica TRAP (*Target Region Amplification Polymorphism*), utiliza informações de genes candidatos para gerar marcadores polimórficos (Hu e Vick 2003), de modo a potencializar a busca por marcas associadas a características de interesse. Além da análise do polimorfismo de regiões gênicas, a técnica de TRAP traz como vantagem a capacidade de produzir perfil de amplificação com muitas bandas por gel, o que diminui o custo por informação de polimorfismo.

TRAP tem sido utilizada com eficiência na detecção de diversidade em canade-açúcar (Alwala et al. 2006a; 2006b), *Vicia faba* L. (Kwon et al. 2010), *Triticum aestivum* L. (Barakat et al. 2013) e *Diospyros kaki* Thunb. (Lou et al. 2013). Também há relatos de sucesso no mapeamento genético de *Helianthus annuus* L. (Chen et al. 2006), trigo (Menzo et al. 2013) e *fingerprinting* molecular em *Spinacia oleracea* L. (Hu et al. 2007). Por outro lado, mesmo com o desenvolvimento de um grande número de ESTs na cultura da mandioca (Lopez et al. 2004; Lokko et al. 2007; Sakurai et al. 2007), relatos do uso da técnica TRAP são raros. Assim, o objetivo deste trabalho foi avaliar o potencial de detecção de polimorfismo em regiões gênicas na cultura da mandioca com uso de marcadores do tipo TRAP bem como avaliar seu potencial para estruturação genética.

MATERIAL E MÉTODOS

Material vegetal e extração de DNA

Dezesseis variedades melhoradas e 30 acessos de germoplasma pertencentes ao Banco Ativo de Germoplasma de Mandioca (BAG-Mandioca) da Embrapa Mandioca e Fruticultura (Cruz das Almas, Brasil), procedentes de vários ecossistemas do Brasil e Colômbia foram utilizados para a análise do polimorfismo dos marcadores TRAP (Tabela 1).

O DNA genômico foi extraído segundo protocolo CTAB (brometo de cetiltrimetilamônio) descrito por Doyle e Doyle (1987). Com o intuito de avaliar a integridade do DNA e padronizar sua concentração, realizou-se quantificação em gel de agarose 1% por comparação visual com diversas concentrações do DNA fago λ (Lambda).

Desenho e otimização dos iniciadores TRAP

Foram selecionadas 99 sequências ESTs envolvidas em diversos processos metabólicos na cultura da mandioca, como deterioração fisiológica pós-colheita, respostas ao ataque de patógenos e estresses abióticos (seca), proteção contra o estresse oxidativo, metabolismo de glicose e nitrogênio, formação de raízes tuberosas, biossíntese de carotenoides, compostos cianogênicos e amido (Tabela 2).

Tabela 1: Relação do conjunto de 46 genótipos de mandioca (variedades melhoradas e acessos) utilizados para a análise do polimorfismo dos marcadores *Target Region Amplification Polymorphism* - TRAP.

Genótipo	Forma de obtenção*	Local de origem	Genótipo	Forma de obtenção	Local de origem
96207-05	ME	Brasil – BA	BGM1116	VL	Brasil – BA
9624-09	ME	Brasil – BA	BGM1179	۷L	Brasil – PE
98150-06	ME	Brasil – BA	BGM1289	۷L	Brasil – PE
9975-01	ME	Brasil – BA	BGM1290	VL	Brasil – PE
BGM0004	VL	Brasil – BA	BGM1291	VL	Brasil – PE
BGM0005	VL	Brasil – MG	BGM1292	VL	Brasil – PE
BGM0006	VL	Brasil – MG	BGM1318	VL	Brasil – PE
BGM0007	VL	Brasil – BA	BGM1341	VL	Brasil – PE
BGM0014	ME	Brasil – BA	BGM1632	VL	Brasil – PR
BGM0019	VL	Brasil – PA	BGM1633	VL	Brasil – CE
BGM0028	VL	Brasil – BA	BGM1660	VL	Brasil – BA
BGM0032	VL	Brasil – RN	BGM1728	ME	Brasil – BA
BGM0036	VL	Brasil – BA	BGM1810	ME	Brasil – BA
BGM0048	VL	Brasil – BA	BGM2020	VL	Brasil – PR
BGM0050	VL	Brasil – BA	BGM2038	VL	Brasil – BA
BGM0054	VL	Brasil – PA	BGM2041	ME	Brasil – BA
BGM0060	VL	Brasil - AM	BGM2043	ME	Brasil – BA
BGM0062	VL	Brasil – BA	BGM2050	ME	Colômbia
BGM0066	VL	Brasil – PA	BGM2052	VL	Brasil – PR
BGM0100	ME	Brasil – BA	BRS Caipira	ME	Brasil – BA
BGM0116	VL	Brasil – BA	BRS Formosa	ME	Brasil – BA
BGM0289	ME	Colômbia	BRS Tapioqueira	ME	Brasil – BA
BGM0982	VL	Brasil – AM	BRS Verdinha	ME	Brasil – BA

^{*}VL = Variedade local; ME = genótipo resultante de melhoramento.

Fonte: Dados de passaporte da Embrapa Mandioca e Fruticultura.

Tabela 2. Relação de 99 genes e iniciadores fixos utilizados na técnica *Target Region Amplification Polymorphism* - TRAP, para análise genética em mandioca.

Número no GenBank	Gene/processo	Processo biológico	Iniciador	Sequência
AY036011.1	Phenylalanine ammonia-lyase 1 (PAL1)	Deterioração fisiológica pós-colheita	Trap-01	gggaagaactcggttgta
EF645824.1	Secretory peroxidase (PX3)	Resposta de defesa XAM	Trap-02	ccaaactgacatgattgc
EU000298.1	S-adenosyl-L-methionine synthetase	Estresse oxidativo e balanço de nutrientes	Trap-03	ccttggttgagacctgat
EU025132.1	Aldo/keto reductase (AKR)	Biossíntese, metabolismo intermediário e desintoxicação	Trap-04	gagattcttctgggcaag
EF568373.1	Neoxanthin synthase (NXS)	Biossíntese de carotenoides	Trap-05	ccatatgggaaatgaacc
EF568374.1	Phytoene desaturase (PDS)	Biossíntese de carotenoides	Trap-06	ctgatcagagcaaagcaa
EF568375.1	Beta-carotene hydroxylase 2 (HYB)	Biossíntese de carotenoides	Trap-07	agagaaggtccgtttgag
EF568376.1	lycopene beta-cyclase (LYCB)	Biossíntese de carotenoides	Trap-08	tgcccttttcttcagatag
EF667960.1	Starch synthase isoform I (SSI)	Biossíntese de amido	Trap-09	ctggtctggagaagcagt
EF667961.1	Starch synthase isoform II (SSII)	Biossíntese de amido	Trap-10	gtaaggggccaatagatg
EU002241.1	NADH-plastoquinone oxidoreductase sub 5 (NDHF)	Proteção contra o estresse oxidativo	Trap-11	tggttcttatgggtggtt
EU249997.1	Catalase-like (CAT1)	Sistema de defesa para eliminação de radicais	Trap-12	tcggtgttcacaccttta
X77012.1	Starch branching enzyme (SBE)	Biossíntese de amido	Trap-13	ggctttatcactgggaag
EU606022.1	Homogentisate phytyltransferase (VTE2)	Estresses abióticos	Trap-14	atcttcccacacttggag
EU736096.1	Phytoene synthase	Biossíntese de carotenoides	Trap-15	gttctttaacgaggcagag
EU736097.1	Carotenoid isomerase	Biossíntese de carotenoides	Trap-16	gatgggatacctttggaa
AY101376.1	Allergenic-related protein Pt2L4 (C1)	Formação de raízes tuberosas	Trap-17	aatgggaactcaccacat
U95298.1	Linamarase (pLIN-GEN)	Compostos cianogênicos	Trap-18	aacctaacaagataccccaag
S35175.1	Linamarase=beta-glucosidase	Compostos cianogênicos	Trap-19	aggtatcccaagaaatcg
FJ688171.1	Glutamic acid-rich protein (Pt2L4)	Formação de raízes tuberosas	Trap-20	tggctactgctgaggtaa
GU111723.1	Phytoene synthase 2 (PSY2)	Biossíntese de carotenoides	Trap-21	ggcagagaaaggagtgac

Tabela 2. Cont...

Número no GenBank	Gene/processo	Processo biológico	Iniciador	Sequência
FN551838.1	Glyceraldehyde-3-phosphate dehydrogenase (G3PDH)	Metabolismo de glicose	Trap-22	tcagataatgcaggatgc
FN551942.1	Nitrate reductase	Metabolismo de nitrogênio	Trap-23	cttccactcctgcaattt
AY188523.1	NBS-LRR resistance protein (RGH1)	Resposta de defesa	Trap-24	ggctttcatttctcacatc
AY188524.1	NBS-LRR resistance protein (RGH2)	Resposta de defesa	Trap-25	ggctttcatttctcacatc
AY187301.1	RCa11	Sinal de transdução	Trap-26	gagggaaagaaattgtgc
GQ922215.1	Sucrose phosphatase (SPP)	Metabolismo de glicose	Trap-27	gttccttgagaggtggag
GU229751.1	Isoamylase (Meisa1)	Metabolismo de carboidratos	Trap-28	ggggaagacaacaatgat
HM038439.1	Granule-bound starch synthase I (GBSSI)	Biossíntese de amido	Trap-29	gcttcttccactcctacaa
HM046981.1	Granule-bound starch synthase II (GBSSII)	Biossíntese de amido	Trap-30	agaggtcaaaatcactgtca
HM046985.1	Glucan water dikinase (GWD)	Metabolismo de ATP	Trap-31	tggaaggacgactaaggta
HM046987.1	Starch branching enzyme I (SBEI)	Biossíntese de amido	Trap-32	atcttgagtgtcccttgtg
HM485466.1	Granule-bound starch synthase (GBSSI)	Biossíntese de amido	Trap-33	aaatctccactccaccac
AY271880.1	NBS type resistance protein (RCa10.7)	Resposta de defesa	Trap-34	caggacttggaggatttc
AY271882.1	NBS type resistance protein (RCa4.1)	Resposta de defesa	Trap-35	gtcttccattggctcttc
AY271884.1	NBS type resistance protein (RCa6.2)	Resposta de defesa	Trap-36	aaatgtcgtggagttcct
AY271887.1	NBS type resistance protein (RCa6.5)	Resposta de defesa	Trap-37	tgtggagttcctcttgct
AY271890.1	TIR type resistance protein (RCa12.3)	Sinal de transdução	Trap-38	ggagaggagatcactcca
GU120072.1	Phytoene desaturase (PDS)	Biossíntese de carotenoides	Trap-39	tgacgactggaaagagatt
GU120073.1	Zeta-carotene desaturase (ZDS)	Biossíntese de carotenoides	Trap-40	cccgttgtatgctcactat
GU120074.1	lycopene beta-cyclase (bLCY)	Biossíntese de carotenoides	Trap-41	tctggtagaagcctttcag
GU120075.1	lycopene epsilon-cyclase (eLCY)	Biossíntese de carotenoides	Trap-42	acattccatcaccttgttc
GU120076.1	beta-carotene hydroxylase (bHYD)	Biossíntese de carotenoides	Trap-43	cagagaaggtccatttgag
GU120077.1	Carotenoid cleavage dioxygenase 1 (CCD1)	Biossíntese de carotenoides	Trap-44	cagtgaatgtgattgatgc

Tabela 2. Cont...

Número no GenBank	Gene/processo	Processo biológico	Iniciador	Sequência
GU120078.1	Carotenoid cleavage dioxygenase 4 (CCD4)	Biossíntese de carotenoides	Trap-45	ggtggaaaaggtgagaata
AF078690.1	Phenylalanine ammonia-lyase (PAL)	Resposta de defesa XAM	Trap-46	gcttcaattgggaaactc
AF078691.1	Peroxidase	Resposta de defesa XAM	Trap-47	gtgaagaaagggagatgg
AY217353.1	Glutamic acid-rich protein (c54)	Formação de raízes tuberosas	Trap-48	caaatcccaagattcctc
X74160.1	Granule-bound starch synthase	Biossíntese de amido	Trap-49	atatacgttaacgcgcaga
X77462.1	UTP-glucose glucosyltransferase (CGT5)	Biossíntese, regulação hormonal, sinalização e desintoxicação	Trap-50	ggtcggagagatcactgt
X77464.1	UTP-glucose glucosyltransferase (CGT7)	Biossíntese, regulação hormonal, sinalização e desintoxicação	Trap-51	tccaagagcttcactgag
AY787210.1	Alpha-hydroxynitrile lyase (HNL)	Compostos cianogênicos	Trap-52	atttggaccgatcaagac
AF136149.1	Glyceraldehyde 3-phosphate dehydrogenase (g3pdh)	Metabolismo de glicose	Trap-53	atgatgtggtgtccactg
AY944583.1	Alpha-amylase (AmyA)	Metabolismo de amido	Trap-54	tcagtcagaagagaatttgg
AY944584.1	Beta-amylase (AmyB)	Metabolismo de amido	Trap-55	ggcttttgtacaaggacat
DN740350.1	Gamma adaptin	Deterioração fisiológica pós-colheita	Trap-56	aatacgtgcttgcaaaact
DN740355.1	Cytochrome P450 CYP79D1a	Deterioração fisiológica pós-colheita	Trap-57	tgttttacatccacaacca
DN740363.1	ROS turnover Aldo/keto reductase (MecAKR)	Deterioração fisiológica pós-colheita	Trap-58	aggtctgtctgaggcttct
DN740364.1	PCD Cysteine protease (MecCP1)	Deterioração fisiológica pós-colheita	Trap-59	gaaggaatcaacaagatcg
DN740366.1	UDP glycosyltransferase	Deterioração fisiológica pós-colheita	Trap-60	gctcctttcattgacctta
DN740367.1	ROS turnover Secretory peroxidase (MecPX3)	Deterioração fisiológica pós-colheita	Trap-61	tatcaggtgcacacacact
DN740369.1	Immunophilin	Deterioração fisiológica pós-colheita	Trap-62	agaagaggtgaagatgctg
DN740370.1	Unknown protein	Deterioração fisiológica pós-colheita	Trap-63	gagatgcctcaaggatatg
DN740371.1	Ion water or metabolite transport (PIP1)	Deterioração fisiológica pós-colheita	Trap-64	gcagagtttattgccactt
DN740373.1	ROS turnover Ascorbate peroxidase (MecAPX2)	Deterioração fisiológica pós-colheita	Trap-65	cttcttccaggtgctctt
DN740374.1	Elongation factor (eF1aa)	Deterioração fisiológica pós-colheita	Trap-66	ttttgaagctggtatttcc
DN740377.1	PCD Class IV chitinase	Deterioração fisiológica pós-colheita	Trap-67	ggtaatctccaatgctgag

Tabela 2. Cont...

Número no GenBank	Gene/processo	Processo biológico	Iniciador	Sequência
DN740379.1	Germin-like protein (MecGLP)	Deterioração fisiológica pós-colheita	Trap-68	acacccagaccctcttc
DN740380.1	Auxin (ARP1)	Deterioração fisiológica pós-colheita	Trap-69	aatgttatcacggctgatt
DN740382.1	PWWP domain protein	Deterioração fisiológica pós-colheita	Trap-70	gatcatgggttgatgattt
DN740383.1	PPD down-regulated genes Expressed protein	Deterioração fisiológica pós-colheita	Trap-71	agcatcccactacaaggta
AF101233.1	ribulose 1,5-bisphosphate carboxylase	Fotossintese	Trap-72	tgcttgttgacgttatcc
AF173900.1	Granule bound starch synthase II precursor (GBSSII)	Biossíntese de amido	Trap-73	tagtaagggggccaatag
AF140613.1	N-hydroxylating cytochrome P450 (CYP79D1)	Compostos cianogênicos	Trap-74	caacgtcaccttgaaaga
DQ011041.1	Alpha-amylase 2 (amy2)	Metabolismo de amido	Trap-75	taactccatccatgacca
DQ071875.1	Plastid ATP/ADP transport protein 1 (AATP1)	Componente de membrana	Trap-76	tcaggtgaaacgtctgaa
DQ071876.1	Plastid ATP/ADP transport protein 2 (AATP2)	Componente de membrana	Trap-77	aaggtggtatgcctgaat
DQ071877.1	Plastid ATP/ADP transport protein 2 (AATP2)	Componente de membrana	Trap-78	tctctggatacccagtcc
DQ138370.1	Neutral/alkaline invertase (nINV1)	Desconhecido	Trap-79	gagacaaacaagcaagca
DQ138373.1	Sucrose transporter type 2 (SUT2)	Deterioração fisiológica pós-colheita	Trap-80	taggaaggtaagggcttg
DT883566.1	Hydroxyproline-rich glycoprotein	Deterioração fisiológica pós-colheita	Trap-81	gattcgaagtgaggtgttt
DT883569.1	Xyloglucan endotransglycosylasea	Deterioração fisiológica pós-colheita	Trap-82	gggagggactagtgaagac
DT883571.1	ATP/ADP translocase precursor	Deterioração fisiológica pós-colheita	Trap-83	ttgatgggtcttgctatct
DT883572.1	L-asparaginase	Deterioração fisiológica pós-colheita	Trap-84	atgaacggtcttccaatc
DT883575.1	Arginine decarboxylase	Deterioração fisiológica pós-colheita	Trap-85	gggaagattgacaaattca
DT883577.1	ROS turnover Catalase (CAT1)	Deterioração fisiológica pós-colheita	Trap-86	aggaggagaagcagaagat
DT883579.1	ROS turnover Thioredoxin-like protein	Deterioração fisiológica pós-colheita	Trap-87	atagcgtcaaatggactgt
DT883581.1	ROS turnover Metallothionein	Deterioração fisiológica pós-colheita	Trap-88	cctgaatggcttgttttat
DT883582.1	ROS turnover Quinone-oxidoreductasea	Deterioração fisiológica pós-colheita	Trap-89	acaatccatgtcttcgact
DT883583.1	ROS turnover Early light induced proteina	Deterioração fisiológica pós-colheita	Trap-90	ctatgtttggggtttggt
DT883584.1	Stress response Dehydrin	Deterioração fisiológica pós-colheita	Trap-91	atcatccaaaaacagagga

Tabela 2: Cont...

Número no GenBank	Gene/processo	Processo biológico	Iniciador	Sequência
DT883585.1	Stress response Heat shock protein 70 cognatea	Deterioração fisiológica pós-colheita	Trap-92	atttttctgatgccacact
DT883586.1	Ribosomal protein L5a	Deterioração fisiológica pós-colheita	Trap-93	cccaaaatattggagctta
DT883592.1	Initiation factor (eIF4a)	Deterioração fisiológica pós-colheita	Trap-94	ggatgatattggcattgat
DT883593.1	Putative endopeptidase	Deterioração fisiológica pós-colheita	Trap-95	ttggataggctttttcaac
DT883595.1	Unknown protein	Deterioração fisiológica pós-colheita	Trap-96	atcgatattgggagatcaa
DT883596.1	Unknown protein	Deterioração fisiológica pós-colheita	Trap-97	tgatattgcctgatgatga
DT883601.1	Unknown protein	Deterioração fisiológica pós-colheita	Trap-98	ttttgggattttacgagag
DT883602.1	Unknown protein	Deterioração fisiológica pós-colheita	Trap-99	ttggtttaattgctgttga

As sequências foram obtidas no banco de dados NCBI - *National Center for Biotechnology Information* (www.ncbi.nlm.nih.gov). Os iniciadores foram desenhados com auxílio do software Primer3 (Rozen e Skaletsky 2000), dos quais apenas o iniciador direto foi utilizado como iniciador fixo. O tamanho ideal do iniciador foi definido como 18 nucleotídeos. Além disso, a Tm ideal, mínima e máxima, foi ajustada para 56, 50 e 60 ° C, respectivamente. Como reverso, foram desenhados quatro iniciadores arbitrários conforme Li e Quiros (2001) adaptados por Hu e Vick (2003) (Tabela 3). Os iniciadores arbitrários compreendem três nucleotídeos seletivos na extremidade 3', quatro nucleotídeos ricos em sequências AT (corresponde a regiões de íntrons) ou GC (corresponde a regiões de éxons) na região central e 11 nucleotídeos aleatórios na extremidade 5'.

Inicialmente, todas as 396 combinações de iniciadores TRAP foram avaliadas na variedade melhorada BRS Verdinha e nos acessos BGM1116, BGM2043 e BGM0212, com intuito de selecionar as combinações com bom padrão de visualização das bandas e maior nível de polimorfismo. Em seguida, as combinações selecionadas foram utilizadas para análise do polimorfismo no conjunto de 46 genótipos de mandioca (Tabela 1).

Tabela 3. Relação dos quatro iniciadores arbitrários utilizados na validação de marcadores *Target Region Amplification Polymorphism* - TRAP em mandioca.

Nome	Sequência de nucleotídeo (3'- 5')
Arb1	attaattcgtacgcagtc
Arb2	gcaaattcgtacgcagtc
Arb3	gtcaattcgtacgcagtc
Arb4	tcaaattcgtacgcagtc

As reações de amplificação foram otimizadas em volume final de 15 μL, concentração do tampão de 1 X, 1,0 U de Taq DNA Polimerase (Pluthero 1993); 2,0 mM de MgCl₂; 0,2 mM de dNTP (Promega, USA); 0,2 uM dos iniciadores (IDT) e 10 ng de DNA. As amplificações foram realizadas em esquema *touch-up* de acordo com o seguinte programa: 94 °C por 2 min; 5 ciclos a 94 °C por 45 s, 35 °C por 45 s e 72° C por 1 min; seguidos por 30 ciclos

a 94 °C por 45 s, 40°C por 45 s, 72 °C por 1 min e extensão final de 72 °C por 7 min em termociclador modelo Veriti® 96-well (Applied Biosystems).

A eletroforese foi realizada em gel de agarose 1000 3% (Invitrogen, Carlsbad, CA), corado com brometo de etídeo (0,15 μg/mL) em tampão TBE 0,5 x (45 mM Tris-borate, 1 mM EDTA e q.s.p de água destilada) visualizados em Luz UV e registradas com o fotodocumentador Gel Logic 212 Pro (Carestream Molecular Imaging, New Haven, USA). O tamanho dos fragmentos foi estimado por comparação visual com Ladder 50 pb (Ludwig Biotec, Alvorada, Brazil).

Discriminação dos marcadores TRAP

Os produtos amplificados foram registrados em código binário ("1" presença; "0" ausência). Marcas monomórficas, pouco legíveis e/ou amplificados com mais de 10% de dados perdidos foram retiradas da análise.

A estimativa do poder de discriminação dos marcadores TRAP, foi estimada considerando as frequências relativas nos genótipos avaliados, com base no PIC (*Polymorphism information content*) que permite distinguir dois alelos tirados ao acaso da população. O PIC foi calculado de acordo com: $PIC = 1 - \sum f_i^2$, na qual f_i é a frequência do ith alelo (Weir 1990). O poder de resolução (Rp) (Prevost e Wilkinson, 1999) dos marcadores TRAP foi calculado de acordo com a fórmula: $Rp = \sum IB$, em que IB refere-se à informatividade dos fragmentos, de acordo com 1 - [2x(0.5 - p)], em que p é a proporção de indivíduos que possuem o fragmento em análise.

Análise de agrupamento

A estrutura dos 46 genótipos de mandioca foi avaliada pelo programa *STRUCTURE* v.2.3 (Pritchard et al. 2000; Falush et al. 2003; 2007; Hubisz et al. 2009). O número de clusters foi inferido utilizando 10 corridas independentes com 20.000 burn-ins e 50.000 MCMC (Monte Carlo Markov Chain) iterações após os burn-ins, utilizando o modelo *admixture ancestry*, locos não ligados e frequências alélicas correlacionadas, com *K* variando de 2 a 10.

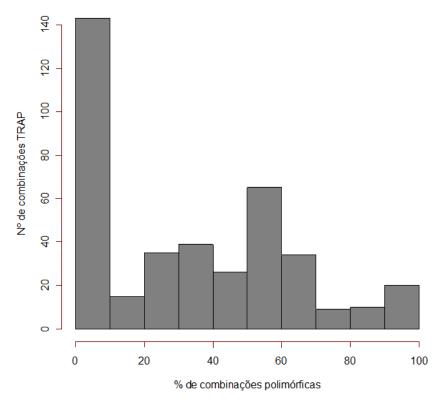
O algoritmo do *STRUCTURE* v.2.3 pode ser efetivo para inferir o número correto de clusters em conjunto de dados que apresentam alguma relação de isolamento por distância. Nos casos em que os padrões de dispersão entre as populações não são homogêneos, a probabilidade log estimada dos dados não fornece uma estimativa correta do número de clusters. Assim, o método ΔK de Evanno et al. (2005) foi estimado com intuito de avaliar se o número inferido de clusters apresentaram resultados sensíveis e confiáveis. Estes métodos são uma estatística *ad hoc* que auxilia o pesquisador a encontrar o valor ideal de K. Por isso, utilizou-se a estatística ΔK , com base na taxa de variação entre os valores sucessivos de K, para inferir o nível de estrutura do conjunto de dados (Evanno et al. 2005). Neste caso, o *STRUCTURE* assume que o genótipo de cada indivíduo em cada locus é totalmente desconhecido.

Análise de variância molecular

A análise de variância molecular (AMOVA) foi efetuada pela decomposição dos componentes principais em diferentes níveis hierárquicos, ou seja: a) tipo de genótipo (variedade local ou variedade melhorada); b) origem dos genótipos [Brasil (BA, MG, PA, CE+RN, AM, PE, PR) e Colômbia], de acordo com a Tabela 1; e c) grupamento teórico obtido pela análise Bayesiana. Estas análises foram realizadas com uso do *software* GenAlEx 6.1 (Peakall e Smouse 2006; 2012).

RESULTADOS E DISCUSSÃO

Seleção das combinações TRAP


Das 396 combinações de iniciadores TRAP avaliadas, 253 (64%) apresentaram um bom padrão de amplificação e polimorfismo nos quatro genótipos analisados. Para estes iniciadores, o número total de fragmentos variou de 1 a 19, com média de 4,18 fragmentos por combinação de iniciador. O número de fragmentos polimórficos variou de 1 a 9 (variação de 11,11 a 100,00% de bandas polimórficas). O percentual de aproveitamento dos iniciadores TRAP foi muito maior do que os 21% de marcadores RAPD, identificados por Colombo et al. (2000) na análise de 126 acessos de mandioca. Por outro lado, o número médio de fragmentos TRAP amplificados em mandioca (4,18) foi menor que os 37 fragmentos observados em *Caladium*

sp., (Deng et al. 2007) e os aproximadamente 33 em cana-de-açúcar (Alwala et al. 2006a) que também apresenta reprodução assexuada.

Do total, 138 combinações TRAP (35%) apresentaram polimorfismos acima de 50% (Figura 1). Além disso, 45 combinações TRAP apresentaram pelo menos quatro bandas polimórficas, cuja percentagem de polimorfismo variou de 31,5 a 100%. Além do alto polimorfismo, observou-se que os marcadores TRAP podem ser bastante úteis como ferramenta molecular na cultura da mandioca, por não envolverem etapas de restrição de DNA e ligação de adaptadores, como se faz na técnica de AFLP, e ainda produzirem padrões de *fingerprinting* semelhantes a outras metodologias (Deng et al. 2007). Isto faz com que a técnica de TRAP seja de mais fácil implementação e tenha menor custo.

Observou-se que o polimorfismo dos marcadores TRAP variou bastante em função do iniciador arbitrário. De modo geral, os iniciadores Arb2 e Arb3 apresentaram o maior número de fragmentos por marcador, com média de 4,74 e 4,90 respectivamente (Tabela 4). Este mesmo comportamento foi observado para o número médio de bandas polimórficas (1,73 e 2,07 para o Arb2 e Arb3, respectivamente). Por outro lado, o Arb1 apresentou a maior percentagem de polimorfismo (45,1%). Isto se deve ao fato de que, embora este iniciador apresente menor número de fragmentos, a maior parte deles são polimórficos. Comportamento semelhante também foi observado para o Arb3 (Figura 2). Assim, em situações como esta, uma estratégia interessante para maximizar a detecção do polimorfismo em mandioca, seria aumentar o número de iniciadores fixos (análise de outras sequências ESTs) em associação com iniciadores arbitrários mais polimórficos.

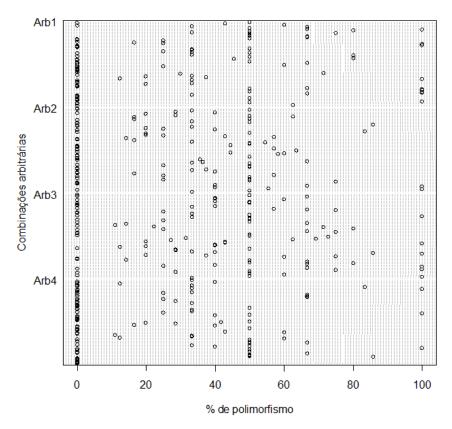
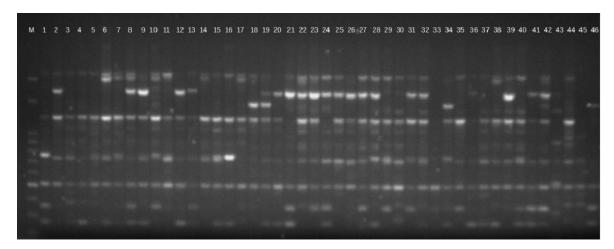

Também foram observadas combinações que não apresentaram polimorfismo (104) e combinações que não apresentaram produtos amplificados (39) (Figura 1). Dentre as combinações que não apresentaram nenhum produto de amplificação, 15, 4, 5 e 15 combinações foram dos iniciadores Arb1, Arb2, Arb3 e Arb4, respectivamente. A ausência de amplificação pode estar relacionada à qualidade da sequência depositada ou pela existência de grandes diferenças genéticas no sítio alvo de amplificação da fonte original utilizada no sequenciamento em relação aos genótipos avaliados.

Figura 1. Histograma do número de combinações TRAP - *Target Region Amplification Polymorphism* e percentagem (%) de combinações polimórficas, obtidas nos testes iniciais de amplificação.

Tabela 4. Polimorfismo e número total de bandas relacionando os iniciadores arbitrários nos testes iniciais de amplificação com 396 combinações *Target Region Amplification Polymorphism* - TRAP.

Iniciador arbitrário	Nº de	bandas	Bar	Bandas Polimórficas			
iniciador arbitrario	Total	Média Total		Média	%		
Arb1	333	3,36	150	1,52	45,1		
Arb2	469	4,74	171	1,73	36,5		
Arb3	485	4,90	205	2,07	42,3		
Arb4	370	3,74	121	1,22	32,7		

Figura 2. Gráfico de pontos referente à percentagem de combinações polimórficas para cada iniciador arbitrário da técnica *Target Region Amplification Polymorphism* - TRAP, obtidas nos testes iniciais de amplificação.


Polimorfismo e poder discriminatório dos marcadores TRAP

Foram selecionadas 84 combinações (21,21%) de iniciadores TRAP (apenas uma combinação fixo com um dos quatro arbitrários) para a avaliação do potencial polimórfico por meio da caracterização de um conjunto de 46 acessos e variedades de mandioca. Deste total, 15 combinações TRAP apresentaram mais de 10% de dados perdidos, e por isso, foram excluídas das Trap04+Arb2, análises (Trap01+Arb2, Trap14+Arb1, Trap25+Arb3, Trap30+Arb3, Trap37+Arb2, Trap49+Arb3, Trap50+Arb3, Trap63+Arb1, Trap65+Arb1, Trap72+Arb2, Trap74+Arb1, Trap80+Arb2, Trap94+Arb1 e Trap96+Arb3).

Das 69 combinações TRAP analisadas em dezesseis variedades e 30 acessos de mandioca, foram identificados 606 alelos, com média de 8,8 alelos por combinação e variação de três (Trap24+Arb2 e Trap43+Arb4) a 18 alelos

por combinação TRAP (Trap81+Arb3). De modo geral, com a seleção dos melhores iniciadores TRAP observou-se elevado polimorfismo nos acessos de mandioca (Figura 3), cuja percentagem de combinações polimórficas variou de 50 a 100% (Tabela 5). Após a primeira etapa de seleção das combinações mais polimórficas, observou-se que o polimorfismo médio dos iniciadores arbitrários foi bastante próximo, i.e., de 96,43, 93,07, 99,71 e 89,84% para os iniciadores Arb1, Arb2, Arb3 e Arb4, respectivamente. Portanto, o processo de seleção inicial das combinações mais polimórficas é essencial para garantir maiores níveis de polimorfismo ao analisar um conjunto maior de germoplasma.

Comparações com outros tipos de marcadores moleculares dominantes indicam que o polimorfismo dos marcadores TRAP foi elevado, pois o uso de marcadores RAPD (Vieira et al. 2010) e AFLP (Mühlen et al. 2000) na caracterização de germoplasma de mandioca indicou polimorfismos médios de 55,8% e 62,0%, respectivamente, que são menores aos obtidos no presente trabalho com marcadores TRAP (95,53%).

Figura 3. Gel de agarose 1000 (2%) ilustrando o padrão de amplificação obtido para a combinação Trap2+Arb3 em 46 acessos de mandioca; M: marcador de peso molecular Ladder 50 pares de base (Ludwig Biotec, Alvorada, Brazil). Números de 1 a 46 representam genótipos analisados (Tabela 1).

Os valores de PIC variaram de 0,03 a 0,38, com média de 0,23 (Tabela 3). Considerando que marcadores TRAP são dominantes, o máximo valor de PIC observável é 0,50. Portanto, quanto mais próximo deste valor, maior o

poder discriminatório do iniciador. Assim, 31 combinações TRAP apresentaram PIC acima de 0,25, tendo assim maior poder de discriminação dentre os genótipos avaliados. Os valores de PIC encontrados em mandioca são comparáveis aos observados pela técnica TRAP em outras culturas, como cana de açúcar (variação de 0,11 a 0,36, e média de 0,24 para 18 combinações TRAP – Alwala et al. 2006b, e variação de 0,20 a 0,35, e média de 0,28 para 16 combinações TRAP – Suman et al. 2012) e *Caladium* Vent. (variação de 0,15 a 0,31, e média de 0,21 para 80 combinações TRAP – Deng et al. 2007). Além disso, os valores de PIC dos marcadores TRAP foram mais informativos que marcadores RAPD em mandioca (variação de 0,00 a 0,27, e média de 0,15 com uso de nove iniciadores – Vieira et al. 2010). Por outro lado, os valores de PIC de marcadores dominantes como os TRAPs são menores do que marcadores codominantes como microssatélites (variação de 0,19 a 0,75 - Fregene et al. 2003; Raji et al. 2009a).

Uma característica importante que define um bom marcador genético é sua capacidade de distinguir os diferentes genótipos. Um critério que vem sendo utilizado para identificar o poder de discriminação de marcadores moleculares é o poder de resolução (Rp) (Prevost e Wilkinson 1999). O Rp indica a informatividade do marcador com base na proporção de bandas presentes em cada combinação. Os valores de Rp dos iniciadores TRAP variaram de 0,10 a 6,30, com média de 3,21. Entretanto, 37 combinações apresentaram valores de Rp acima da média, sendo 20 delas comuns às mais polimórficas (PIC>0,25), ou seja, Trap90+Arb4, Trap40+Arb3, Trap88+Arb1, Trap95+Arb3, Trap02+Arb2, Trap93+Arb3, Trap05+Arb3, Trap13+Arb2, Trap59+Arb2, Trap11+Arb3, Trap35+Arb2, Trap99+Arb4, Trap69+Arb2, Trap07+Arb2, Trap18+Arb3, Trap47+Arb3, Trap89+Arb3, Trap20+Arb3, Trap26+Arb3 e Trap81+Arb3. Estes valores de Rp são comparáveis aos observados por Paliwal et al. (2013), ao analisarem 21 acessos de Tinospora cordifolia, com base em 35 marcadores ScoT (Start Codon Targeted), cuja variação foi de 0,95 a 5,14, com uma média de 2,6 por iniciador. No entanto, avaliando as relações genéticas em Diospyros kaki Thunb. e espécies aliadas os valores de Rp variaram de 50,67 a 12,95 e portanto maiores daqueles relatados neste trabalho (Lou et al. 2013).

Tabela 5. Combinações de iniciadores *Target Region Amplification Polymorphism* - TRAP selecionadas para a análise do polimorfismo em 46 genótipos de mandioca.

	Nº	de					Nº	de			
Combinação	ban	das	%Poli	PIC ²	Rp^3	Combinação	ban	das	%Poli	PIC	Rp
-	Total	Poli ¹	-		-		Total	Poli			
Trap02+Arb2	8	8	100,00	0,26	3,80	Trap45+Arb3	14	13	92,86	0,23	4,70
Trap03+Arb3	10	10	100,00	0,03	0,10	Trap46+Arb2	8	8	100,00	0,21	2,20
Trap05+Arb3	7	7	100,00	0,30	3,90	Trap47+Arb3	8	8	100,00	0,25	5,10
Trap06+Arb1	10	10	100,00	0,21	4,00	Trap48+Arb3	13	13	100,00	0,24	4,90
Trap07+Arb2	11	11	100,00	0,26	4,30	Trap52+Arb3	10	10	100,00	0,19	2,70
Trap08+Arb2	8	8	100,00	0,20	3,10	Trap57+Arb2	6	6	100,00	0,21	1,70
Trap09+Arb2	7	6	85,71	0,18	2,60	Trap58+Arb2	4	2	50,00	0,10	0,40
Trap10+Arb1	5	5	100,00	0,20	2,00	Trap59+Arb2	7	7	100,00	0,28	4,00
Trap11+Arb3	11	9	81,82	0,25	4,10	Trap60+Arb1	12	12	100,00	0,18	4,90
Trap13+Arb2	9	9	100,00	0,27	4,00	Trap61+Arb3	10	10	100,00	0,20	4,30
Trap16+Arb2	6	4	66,67	0,09	0,90	Trap66+Arb1	11	11	100,00	0,21	4,30
Trap17+Arb3	12	12	100,00	0,22	3,50	Trap68+Arb1	14	12	85,71	0,22	4,50
Trap18+Arb3	11	11	100,00	0,26	4,80	Trap69+Arb2	13	12	92,31	0,28	4,20
Trap19+Arb3	9	9	100,00	0,22	2,60	Trap70+Arb2	8	8	100,00	0,27	1,80
Trap20+Arb1	12	12	100,00	0,22	5,50	Trap71+Arb3	6	6	100,00	0,21	0,80
Trap20+Arb3	15	15	100,00	0,25	5,30	Trap75+Arb3	6	6	100,00	0,30	1,20
Trap21+Arb3	11	11	100,00	0,17	1,60	Trap76+Arb3	4	4	100,00	0,26	1,50
Trap22+Arb4	5	5	100,00	0,20	2,00	Trap77+Arb2	7	7	100,00	0,13	1,20
Trap24+Arb2	3	3	100,00	0,38	0,50	Trap79+Arb4	7	5	71,43	0,31	2,30
Trap26+Arb3	10	10	100,00		-	Trap81+Arb3	18	18	100,00	0,25	6,30
Trap27+Arb3	7	7	100,00	0,29	3,20	Trap82+Arb4	6	6	100,00	0,27	1,40
Trap28+Arb3	13	13	100,00	0,24	6,30	Trap84+Arb1	7	6	85,71	0,20	1,50
Trap29+Arb4	10	9	90,00	0,24	4,90	Trap85+Arb1	6	6	100,00	0,31	3,00
Trap31+Arb4	10	10	100,00	•	3,50	Trap86+Arb1	6	6	100,00	0,24	1,40
Trap32+Arb1	10	10	100,00	0,23	5,30	Trap88+Arb1	6	6	100,00	0,32	3,50
Trap33+Arb4	11	10	90,91	0,23	4,20	Trap89+Arb3	13	13	100,00	0,26	•
Trap34+Arb1	11	11	100,00	•	•	Trap90+Arb4	13	9	69,23	,	3,30
Trap35+Arb2	8	7	87,50	0,25	4,20	Trap91+Arb1	4	3	75,00	0,06	0,30
Trap36+Arb2	7	7	100,00	0,26	2,50	Trap92+Arb1	6	6	100,00	0,25	1,80
Trap38+Arb4	14	14	100,00			Trap93+Arb3	9	9	100,00		
Trap39+Arb2	9	9	100,00	0,24	3,70	Trap95+Arb3	7	7	100,00		
Trap40+Arb3	11	11	100,00			Trap97+Arb1	7	7	100,00		
Trap41+Arb4	7	7	100,00	•		Trap98+Arb3	6	6	100,00		
Trap42+Arb3	7	7	100,00	•	•	Trap99+Arb4	6	6	100,00	0,28	4,20
Trap43+Arb4	3	2	66,67			tion Contant 3Pr	Б.				

¹Poli: Polimorfismo; ²PIC: *Polymorphism Information Content*; ³Rp: Poder de resolução do marcador.

As variações genéticas que resultam em polimorfismos na sequência de DNA podem ser funcionais, por causar mudanças no metabolismo celular ou em características fenotípicas ou neutras quando não estão sujeitos à seleção positiva ou negativa (Marsjan e Oldenbroek 2007). Os polimorfismos moleculares que surgem devido a mutações podem resultar em um aumento ou diminuição da eficiência metabólica, bem como em alterações nos padrões de expressão gênica em diversos níveis. Atualmente, existe uma necessidade de ganhar eficiência nos programas de melhoramento genético por meio da integração da informação genômica funcional com a genética de forma a elucidar a relação funcional entre genótipo e fenótipo. Assim, um dos grandes desafios dos programas de melhoramento é fazer a escolha correta de marcadores genéticos moleculares para a identificação das variações funcionais em rotas metabólicas especificas e de maior interesse nas culturas alvo.

Especificamente no caso da mandioca, as 99 seguências ESTs relacionadas aos iniciadores deste trabalho estão associadas a distintas rotas metabólicas relacionadas (Tabela 2). Contudo, a análise genética de alguns genes associados a estas rotas metabólicas, com base em marcadores TRAP indicaram maior polimorfismo (considerando um mínimo de 70% de fragmentos polimórficos, PIC >0,25 e Rp >3,21) nos genes associados à biossíntese de carotenoides (Trap05+Arb3, amido (Trap13+Arb2), Trap07+Arb2 Trap40+Arb3), compostos cianogênicos (Trap18+Arb3), deterioração fisiológica pós-colheita (Trap59+Arb2, Trap81+Arb3, Trap89+Arb3, Trap93+Arb3 e Trap95+Arb3), formação de raízes tuberosas (Trap20+Arb3), proteção contra estresse oxidativo (Trap11+Arb3) e resposta de defesa contra patógenos (Trap35+Arb2, Trap02+Arb2 e Trap47+Arb3) (Tabela 5).

Suman et al. (2012) relataram um alto nível de polimorfismo em 64 genótipos pertencentes a oito espécies de cana-de-açúcar (*Saccharum* sp.), ao analisarem quatro genes associados à rota metabólica de lignina em cana-de-açúcar, com uso da técnica TRAP. Por outro lado, este polimorfismo foi menor em genes associados à rota metabólica de sacarose, bem como de tolerância ao frio e seca (Alwala et al. 2006b). Isto indica, que mesmo se tratando de regiões genômicas associadas a fenótipos específicos, a garantia de uma

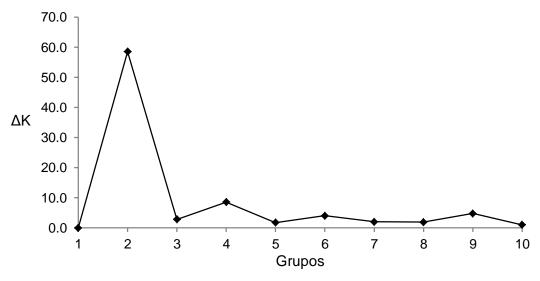
maior cobertura genômica pela técnica de TRAP, precisa ser precedida por etapas de otimização do polimorfismo em genes alvo.

Alelos privados de marcadores TRAP

Alguns iniciadores TRAP foram capazes de identificar alelos privados, ou seja, presentes em um único indivíduo em determinados genótipos (Tabela 6). Observou-se 37 fragmentos privados em 20 dos 46 genótipos de mandioca avaliados. Em relação aos genótipos, foram observados de um (98150-06, BGM0048, BGM0050, BGM0066, BGM0289, BGM1116, BGM1291, BGM1632, BGM1728, BGM2038, BRS Caipira e BRS Verdinha) a nove alelos privados (BGM1341) (Tabela 6).

A presença de alelos privados pode estar relacionada com algum grau de evolução ou adaptação a ambientes específicos que podem gerar estruturas populacionais diferenciadas, ou mesmo alguma característica específica do marcador utilizado. Assim, a presença de alelos privados é um componente importante para diferenciação de espécies e até mesmo indivíduos dentro das espécies com características específicas. Portanto, a identificação de diversos alelos privados em mandioca com a técnica de TRAP, indica o seu grande potencial de uso como marcador genético, para nortear estratégias de conservação da variabilidade e mesmo ações relacionadas ao melhoramento da cultura.

Tabela 6. Relação de alelos privados detectados em 27 combinações de iniciadores *Target Region Amplification Polymorphism* - TRAP.


Acessos	Combinação/alelo	Processo biológico
96207-05	Trap38+Arb4 (180pb)	Sinal de transdução
90207-05	Trap61+Arb3 (600pb)	Deterioração fisiológica pós-colheita
98150-06	Trap39+Arb2 (NE*pb)	Biossíntese de carotenoides
DCM0004	Trap20+Arb1 (650pb)	Formação de raízes tuberosas
BGM0004	Trap31+Arb4 (1000pb)	Metabolismo de ATP
BGM0006	Trap32+Arb1 (800pb)	Biossíntese de amido
BGIVI0000	Trap68+Arb1 (510pb)	Deterioração fisiológica pós-colheita
	Trap32+Arb1 (850pb)	Biossíntese de amido
BGM0019	Trap46+Arb2 (240pb)	Resposta de defesa XAM
	Trap66+Arb1 (300pb)	Deterioração fisiológica pós-colheita
BGM0048	Trap17+Arb3 (400pb)	Formação de raízes tuberosas
BGM0050	Trap90+Arb4 (900pb)	Deterioração fisiológica pós-colheita
BGM0066	Trap22+Arb4 (1050pb)	Metabolismo de glicose
BGM0289	Trap34+Arb1 (1500pb)	Resposta de defesa
BGM1116	Trap38+Arb4 (230pb)	Sinal de transdução
	Trap06+Arb1 (1050pb)	Biossíntese de carotenoides
BGM1179	Trap34+Arb1 (1100pb)	Resposta de defesa
	Trap98+Arb3 (650pb)	Deterioração fisiológica pós-colheita
BGM1291	Trap81+Arb3 (1300pb)	Deterioração fisiológica pós-colheita
	Trap02+Arb2 (650pb)	Resposta de defesa XAM
	Trap08+Arb2 (300pb)	Biossíntese de carotenoides
	Trap20+Arb3 (500pb)	Formação de raízes tuberosas
	Trap21+Arb3 (1000pb)	Biossíntese de carotenoides
BGM1341	Trap33+Arb4 (140pb)	Biossíntese de amido
	Trap33+Arb4 (160pb)	Biossíntese de amido
	Trap38+Arb4 (390pb)	Sinal de transdução
	Trap52+Arb3 (400pb)	Compostos cianogênicos
	Trap52+Arb3 (450pb)	Compostos cianogênicos
BGM1632	Trap71+Arb3 (1500pb)	Deterioração fisiológica pós-colheita
BGM1660	Trap03+Arb3 (1300pb)	Estresse oxidativo e balanço de nutrientes
DGIVITO00	Trap41+Arb4 (1000pb)	Biossíntese de carotenoides
BGM1728	Trap16+Arb2 (300pb)	Biossíntese de carotenoides
BGM2038	Trap45+Arb3 (475pb)	Biossíntese de carotenoides
DCM2050	Trap06+Arb1 (340pb)	Biossíntese de carotenoides
BGM2050	Trap98+Arb3 (600pb)	Deterioração fisiológica pós-colheita
BRS Caipira	Trap81+Arb3 (220pb)	Deterioração fisiológica pós-colheita
BRS Verdinha	Trap13+Arb2 (1500pb)	Biossíntese de amido
*NF = não estimad	0	

^{*}NE = não estimado.

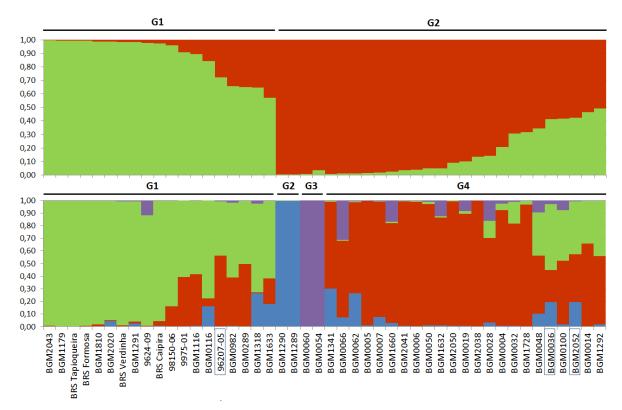
Moyib et al. (2012) utilizaram 18 marcadores microssatélites para caracterização de 43 variedades melhoradas de mandioca, previamente avaliadas quanto à resistência à podridão radicular. Como resultado deste trabalho foi identificado três alelos privados presentes nas classes de variedades altamente suscetíveis (SSRY12), suscetíveis (SSRY101) e resistentes à podridão radicular (SSRY177). Em outro estudo, Alves-Pereira et al. (2011) analisaram 10 locos de microssatélites para estudar a diversidade genética e estruturação de variedades de mandioca cultivadas em diferentes tipos de solo ao longo do Rio Madeira (Amazônia Central, Brasil). Neste estudo, foram encontrados 21 alelos privados presentes em variedades com alto teor de compostos cianogênicos ("amargas"), enquanto que nas variedades com baixo teor de compostos cianogênicos ("doce") não foram observados. A maioria dos alelos privados estava em baixas frequências, mas, curiosamente, variedades coletadas em áreas sujeitas à inundação apresentaram alelos privados em maior frequência (>0,05). Por outro lado, em espécies domesticadas com baixa variação genética, como é o caso da mamona, a existência de alelos privados, mesmo com marcadores de alta densidade como SNPs não tem sido relatada (Foster et al. 2010).

Análise de agrupamento

O agrupamento com base na análise Bayesiana, que considera todos os genótipos sem informação de origem (Pritchard et al. 2000), associado ao método de Evanno et al. (2005), revelou a presença de dois grupos principais (k=2) e quatro subgrupos (k=4) (Figura 3). Segundo Evanno et al. (2005), em modelos mais complexos, o *STRUCTURE* detecta o maior nível hierárquico. Isto poderia explicar o primeiro nível hierárquico com K=2 e um segundo nível com K=4.

Figura 3: Estimativa de ΔK em função do número de grupos (k) de acordo com a metodologia desenvolvida por Evanno et al. (2005).

Hierarquias semelhantes foram observadas em outras espécies de propagação vegetativa. Emanueli et al. (2013) investigaram os padrões de diversidade molecular utilizando 22 microssatélites e 384 SNPs em 2273 acessos de videira domesticadas (*Vitis vinifera* ssp. *sativa*), espécies silvestres (*V. vinifera* spp *sylvestris*), híbridos interespecíficos e porta-enxertos. Os resultados destes autores demonstraram a presença de um primeiro nível hierárquico com K = 2, tanto para marcadores microssatélites quanto SNPs, e picos de Δ K para K = 3 (microssatélites e SNPs) e K = 6 (microssatélites). A estrutura com K = 2 possibilitou a discriminação dos acessos de *Vitis* não-*vinifera* (porta-enxertos) dos acessos *V. vinifera* (*sativa* e *sylvestris*).


A análise Bayesiana com K = 2 indicou que a maioria dos indivíduos no Grupo 1 (63%) e Grupo 2 (59%) possui uma alta ancestria em cada grupo (Q>0,90), muito embora esta probabilidade seja bastante variável dentro dos grupos (0,57 a 0,99 no Grupo 1 e 0,51 a 0,99 no Grupo 2) (Figura 4). A participação dos indivíduos em populações distintas indica que compartilham algumas regiões genômicas. Ao considerarmos a ancestria, observa-se que os genótipos BGM1633, BGM0036, BGM0100, BGM2052, BGM0014 e BGM1292 compartilham diversos alelos em ambos os grupos (0,51<Q<0,59). Por outro lado, com K = 4 os indivíduos dos Grupos 2 e 3 apresentaram uma alta probabilidade de alocação dentro destes grupos (0,99), enquanto que no Grupo 1 esta probabilidade variou de 0,42 (BGM2052) a 0,99 (BGM1179). No Grupo 4

esta variação foi de 0,46 (BGM0048) a 0,99 (BGM2038) (Figura 4). Utilizando esta subestrutura, observou-se que de modo geral, houve uma alta porcentagem de mistura em muitos acessos dos Grupos 1 e 4, com possibilidade de alocação em mais de um grupo (Figura 4). Caso fosse adotado um critério mínimo de atribuição de 0,60, cerca de 20% dos acessos não seriam alocados em nenhum grupo. Quinze dos 46 acessos analisados foram identificados como provenientes de uma única fonte (Q>0,97).

A presença de misturas nos genótipos dificulta a sua alocação em grupos de diversidade bem definidos, mesmo com modelos de estrutura populacional bastante rigorosos como os implementados pelo *STRUCTURE*. Em um estudo desta natureza, Twito et al. (2007), verificaram que 25 SNPs oriundos de regiões gênicas foram capazes de atribuir corretamente apenas 12 raças de galinha, enquanto outras oito raças diversas foram excluídos da análise por apresentarem sérios problemas com a atribuição a populações específicas.

Ao estruturar os genótipos de mandioca com K = 2 e 4, observou-se que o clone melhorado 96207-05 presente no Grupo 1, com K =2 foi alocado no Grupo 4, quando se considerou a estrutura do subgrupo (K = 4), enquanto que os acessos BGM0036 e BGM2052, previamente alocados no Grupo 2 com K = 2, foram realocados no Grupo 1 quando se utilizou K = 4 (Figura 4). Em todas estas situações, quando se analisou a estruturação do subgrupo (K = 4), a ancestria destes genótipos foi bastante baixa, sendo 0,56, 0,52 e 0,42 para 96207-05, BGM0036 e BGM2052, respectivamente. Uma possível explicação para isso pode ser a presença de cruzamentos múltiplos entre diferentes indivíduos ao longo do processo de domesticação da espécie.

Observações de ancestria múltipla à medida que se aumenta a subdivisão das populações foram observadas em espécies como o esturjão branco (*Acipenser transmontanus* R.), na qual alguns indivíduos apresentaram uma alta ancestria em um determinado grupo com K = 2 (Q>0,95), porém quando se assumiu K = 3, a ancestria destes indivíduos foi dividida em dois grupos, cada uma com um coeficiente de adesão de 0,50 (Schreier et al. 2012).

Figura 4. Agrupamento inferido pela análise Bayesiana implementada pelo software *STRUCTURE* v.2.3 (Pritchard et al. 2000; Falush et al. 2003; 2007; Hubisz et al. 2009) para K = 2 e 4. Os genótipos estão representados na linha vertical, e cada agrupamento genético por uma cor distinta. Cada linha vertical representa um indivíduo fracionado em segmentos cuja coloração e tamanho são proporcionais à porcentagem de alelos compartilhados em cada grupo. Em detalhe acessos classificados em diferentes grupos para K = 2 e K = 4.

Análise de Variância Molecular (AMOVA)

Considerando as informações de passaporte sobre a origem dos acessos realizou-se a AMOVA (Tabela 7) para determinar o grau de diferenciação genética entre os acessos. Utilizando esta hierarquia, observou-se que a maior parte da variação está presente dentro dos grupos (99,37%). Em gergelim, a análise de 32 marcadores AFLP indicou que mesmo com apenas 5% da variância entre grupos, houve diferença significativa entre grupos (P <0,05), com base no teste de permutações. Esta diferenciação ocorreu basicamente em função da grande diferença existente entre acessos da Ásia Central em relação aos outros centros de diversidade (Laurentin e Karlovsky 2006). No caso especifico da mandioca, observou-se a inexistência

de diferenciação dos acessos com base na sua organização em função da origem geográfica (PhiPT = 0,006^{ns}).

Tabela 7. Análise da variância molecular (AMOVA), considerando as informações de origem dos acessos, conforme apresentado na Tabela 1, utilizando 553 marcas *Target Region Amplification Polymorphism -* TRAP em 46 genótipos de mandioca.

FV	GL	SQ	QM	E(QM)	% de variação	PhiPT
Entre grupos	7	634,43	90,63	0,55	0,63	0,006 ^{ns}
Dentro dos grupos	38	3298,07	86,79	86,77	99,37	
Total	45	3932,50				

GL = Grau de liberdade, SQ = soma dos quadrados, QM = quadrado médio, E(QM) = estimativa da variância. PhiPT = índice de fixação de alelos, ns = não significativo.

A distribuição da diversidade genética em plantas depende da sua evolução, sistema de reprodução, fatores ecológicos e geográficos e muitas vezes das atividades humanas (Ramanatha e Hodgkin 2002). No caso específico da mandioca, a polinização cruzada desempenha um papel importante neste mecanismo evolutivo, uma vez que a taxa de cruzamento pode variar de 69 a 100% dependendo do acesso (Silva et al. 2003). Fatores ecológicos e geográficos também têm apresentado um papel importante na evolução de mandioca (Chavarriaga-Aguirre e Halsey 2005). Do ponto de vista da domesticação, estima-se que o homem tenha iniciado sua relação com a mandioca cerca de 5000 a 7000 AC, de acordo com achados arqueológicos (Gibbons 1990). Entretanto, o fluxo de materiais dentro do Brasil e até mesmo em diferentes países tenha se acentuado nos últimos 30 anos. Geralmente esta troca/migração é acompanhada pela troca de nomes dos genótipos o que induz a erros na atribuição correta da origem do acesso. Isto certamente tem contribuído para a baixa associação entre diversidade molecular e origem geográfica. Observação desta natureza foi realizada por Mezette et al. (2013) ao analisaram 419 acessos de mandioca com base em características morfológicas, na qual a maior parte da variação genética foi encontrada para dentro das regiões de obtenção do germoplasma (95,6%). Isto implica em

baixa diferenciação dos genótipos entre as regiões, provavelmente como resultado do fluxo de genes e troca de genótipos entre as regiões.

Considerando a divisão dos acessos com base na sua forma de obtenção, seja na forma de coleta, na natureza ou oriundos de programas de melhoramento genético, também se observou maior parte da variação genética presente dentro destes dois grupos (Tabela 8), porém, observou-se uma diferença significativa entre grupos (PhiPT = 0,125, p<0,01). Estes resultados são comparáveis aos observados por Raji et al. (2009b) ao avaliarem um conjunto de variedades locais africanas e cultivares elite com base em 20 marcadores AFLP e 50 microssatélites, na qual se observou 83% da variação dentro das populações e 17% entre as variedades locais e variedades elite. Estes autores ainda observaram que as cultivares de elite foram agrupados na maioria dos casos de acordo com seu pedigree, porém com baixa variação genética em comparação com as variedades locais.

No presente trabalho, a maioria das variedades melhoradas de mandioca (69%) foi alocada no Grupo (K = 2), enquanto as demais (BGM2041, BGM2050, BGM1728, BGM0100 e BGM0014) foram alocadas no Grupo 4 (Figura 4). Em mandioca, é comum a coleta de variedades locais que após um intenso processo de adaptação e validação agronômica em diferentes regiões produtoras sejam recomendadas como variedades melhoradas, sem serem clones originados de hibridação. Assim, é possível que um acesso seja classificado como melhorado por ser uma variedade recomendada, quando de fato foi obtido por introdução de germoplasma. Este pode ser o caso específico dos acessos BGM2041, BGM0100 e BGM0014, que são oriundos de doações de antigos programas de melhoramento do Centro de Pesquisa do Cacau -CEPEC e Instituto de Pesquisa e Experimentação Agropecuária do Leste -IPEAL, e que por isso não se sabe corretamente a forma de obtenção, se por coleta ou hibridação. Estas incoerências fazem com que os dados de passaporte devam ser observados com cautela nos estudos de diversidade e agrupamento genético. Apesar disso, observou-se uma boa formação de grupos de diversidade de mandioca, levando em consideração o padrão de melhoramento.

Tabela 8. Análise da variância molecular (AMOVA), considerando a forma de obtenção dos acessos, em coleta e melhoramento, utilizando 553 marcas *Target Region Amplification Polymorphism* - TRAP em 46 genótipos de mandioca.

FV	GL	SQ	QM	E(QM)	% de variação	PhiPT
Entre grupos	1	111,74	111,74	12,45	12,55	0,125**
Dentro dos grupos	44	3820,76	86,84	86,78	87,45	
Total	45	3932,50				

GL = Grau de liberdade, SQ = soma dos quadrados, QM = quadrado médio, E(QM) = estimativa da variância. PhiPT = índice de fixação de alelos, ** significativo a 1% de probabilidade pelo método de randomização, utilizando 999 permutações.

Ao considerar os agrupamentos com dois (K = 2) ou quatro grupos (K = 4), de acordo com a análise Bayesiana sem considerar indivíduos com ancestralidade misturada, observou-se que a maior parte da variação genética está presente dentro dos grupos, porém com uma importante diferença existente entre os grupos formados com ambos os tipos de estruturação (PhiPT = 0,139 e 0,138, p<0,01, respectivamente) (Tabelas 9 e 10).

Tabela 9. Análise da variância molecular (AMOVA), considerando os dois grupos formados pelo *STRUCTURE*, com base na análise de 553 marcas *Target Region Amplification Polymorphism* - TRAP em 46 genótipos de mandioca.

FV	GL	SQ	QM	E(QM)	% de	 PhiPT
1 V	0 -	OQ	QIVI	L(QIVI)	variação	
Entre grupos	1	114,83	114,83	14,03	13,92	0,139**
Dentro dos grupos	44	3817,67	86,77	86,78	86,08	
Total	45	3932,50				

GL = Grau de liberdade, SQ = soma dos quadrados, QM = quadrado médio, E(QM) = estimativa da variância. PhiPT = índice de fixação de alelos, ns = não significativo.** significativo a 1% de probabilidade pelo método de randomização, utilizando 999 permutações.

Ao utilizarem informações de agrupamento da análise Bayesiana para a partição da variabilidade genética pela AMOVA, Wang et al. (2014), também observaram que a maior parte da diversidade genética estava dentro dos grupos (1,87% para K = 4 e 3,48% para K = 7), ao analisarem acessos de damasco siberiano oriundos de 22 populações da China, com base em marcadores microssatélites. Além disso, com as populações agrupadas de acordo com a origem geográfica, uma menor percentagem de variação (1,98%) foi explicada pelos fatores geográficos.

Geralmente informações taxonômicas, origem geográfica dos acessos, condições edafoclimáticas, formas de coleta e obtenção, data de coleta, dentre outras, constam nos dados de passaporte do acesso. Portanto, os dados de passaporte são de fundamental importância para o uso e gestão eficaz de coleções de germoplasma, sendo inclusive utilizados pelos curadores de germoplasma e melhoristas para agrupamento de acessos, elaborar coleções nucleares ou identificar redundâncias e lacunas nas coleções de germoplasma (Hazekamp 2002). Entretanto, mesmo com toda esta importância, os dados de passaporte do BAG-Mandioca da Embrapa Mandioca e Fruticultura são antigos e muitas informações estão incompletas e em alguns casos observam-se algumas incoerências. Por exemplo, muitos acessos não foram coletados in situ, mas sim intercambiados com outras coleções nacionais, porém nos dados de origem constam a localização da instituição doadora e não a origem de coleta. Além disso, muitos acessos foram doados por agricultores que simplesmente enviavam os acessos com um mínimo de descrição do material. Adicionalmente, muitos acessos também foram acrescentados ao banco a partir de coletas em locais isolados com um mínimo de informação sobre a origem do material.

Tudo isso faz com que as informações geradas pelos marcadores moleculares sejam mais interessantes para a caracterização do material genético, por fornecer informações mais precisas e detalhadas em comparação com as informações de passaporte, a exemplo das inconsistências observadas em relação à origem geográfica dos acessos (Colombo et al. 2000; Kawuki et al. 2009; Asare et al. 2011; Mezette et al. 2013). Além disso, com o avanço das técnicas moleculares e formas de genotipagem as informações moleculares, a exemplo dos iniciadores TRAP desenvolvidos no presente trabalho, tendem a

ser a forma mais rápida e prática para conduzir estudos sobre os recursos genéticos de mandioca em grande escala para um grande número de acessos.

Tabela 10. Análise da variância molecular (AMOVA), considerando os quatro grupos formados pelo *STRUCTURE*, com base na análise de 553 marcas *Target Region Amplification Polymorphism* - TRAP em 46 genótipos de mandioca.

FV	GL	SQ	QM	E(QM)	% de variação	PhiPT
Entre grupos	3	412,85	137,62	13,45	13,83	0,138**
Dentro dos grupos	42	3519,65	83,80	83,80	86,17	
Total	45	3932,50				

GL = Grau de liberdade, SQ = soma dos quadrados, QM = quadrado médio, E(QM) = estimativa da variância. PhiPT = índice de fixação de alelos.** significativo a 1% de probabilidade pelo método de randomização, utilizando 999 permutações.

Implicações para a pesquisa com germoplasma e melhoramento

Considerando que a identificação e o uso apropriado da variação genética constituem-se numa das principais etapas do melhoramento de plantas, é preciso investir em técnicas e procedimentos que permitam a obtenção de respostas rápidas e precisas para a análise de germoplasma ou populações segregantes. Em relação à detecção da variação genética, observa-se que de modo geral, a caracterização molecular possui algumas vantagens importantes em relação aos marcadores morfo-agronômicos como a possibilidade de análise em qualquer estádio de desenvolvimento da planta e a partir de qualquer tecido sem influência ambiental. Particularmente os marcadores TRAP possuem a vantagem de não apresentarem custo para sua descoberta, após a obtenção das sequencias expressas (Kwon et al. 2010), além de terem suas supostas funções por análises de homologia (Zhang et al. 2010).

Em relação à identificação de variações genéticas no germoplasma de mandioca, os marcadores TRAP poderão contribuir para aumentar o uso de recursos genéticos, pois as informações genotípicas permitem estabelecer o grau de parentesco e relacionamento dos acessos, possibilitando a identificação de duplicatas e otimização da conservação. Além disso, os marcadores TRAP poderão contribuir para o estabelecimento de coleções nucleares representativas da riqueza alélica do germoplasma, que poderão ser alvo de intensas avaliações fenotípicas para características de importância agronômica visando até mesmo à associação alélica dos marcadores TRAP a variantes fenotípicas passiveis de seleção indireta.

Do ponto de vista do melhoramento genético, os marcadores TRAP desenvolvidos no presente trabalho poderão contribuir para o desenvolvimento de mapas genéticos saturados visando à identificação de genes ou locos controladores de características quantitativas (QTLs) de grande importância econômica, a exemplo de deterioração fisiológica pós-colheita, resistência a doenças como couro de sapo, bacteriose e podridão radicular, além de características produtivas como produtividade de raiz e amido. Além do mapeamento em cruzamentos biparentais, os marcadores TRAP poderão contribuir para o mapeamento associativo, seleção genômica e até mesmo na mineração de alelos úteis a determinados processos biológicos.

Estas aplicações feitas até então em culturas de grande expressão comercial, como milho, soja, tomate e trigo, poderão se tornar uma realidade para culturas órfãs como é o caso da mandioca. Nas grandes culturas, o melhoramento assistido por marcadores moleculares tem contribuído sobremaneira para melhorar a predição do fenótipo através do genótipo utilizando diferentes ferramentas e estratégias genômicas (Pérez-de-Castro et al. 2012; Lado et al. 2013). Este processo pode acelerar o desenvolvimento de novas cultivares de mandioca com alto potencial produtivo e resistência ou tolerância a estresses bióticos ou abióticos, considerando a facilidade e praticidade de se trabalhar com amostras de DNA ao invés dos altos custos e baixa acurácia da fenotipagem.

REFERÊNCIAS

Aiemnaka P, Wongkaew A, Chanthaworn J, Nagashima SK, Boonma S, Authapun J, Jenweerawat S, Kongsila P, Kittipadakul P, Nakasathien S, Sreewongchai T, Wannarat W, Vichukit V, Lopez-Lavalle LAB, Ceballos H,

- Rojanaridpiched C, Phumichai C (2012) Molecular Characterization of a spontaneous waxy starch mutation in cassava. Crop Sci 52:2121-2130.
- Akinbo O, Gedil M, Ekpo EJA, Oladele J, Dixon AGO (2007) Detection of RAPD markers-linked to resistance to cassava anthracnose disease. Afr J Biotechnol 6:677-682.
- Alves-Pereira A, Peroni N, Abreu AG, Gribel R, Clement CR (2011) Genetic STRUCTURE of traditional varieties of bitter manioc in three soils in Central Amazonia. Genetica 139:1259-1271.
- Alwala S, Kimbeng CA, Gravois KA, Bischoff KP (2006a) TRAP, a new tool for sugarcane breeding: comparison with AFLP and coefficient of parentage. Sugar Cane Intern 26:62-86.
- Alwala S, Suman A, Arro JA, Veremis JC, Kimbeng CA (2006b) Target Region Amplification Polymorphism (TRAP) for assessing genetic diversity in sugarcane germplasm collections. Crop Sci 46:448-455.
- Asare PA, Galyuon IKA, Sarfo JK, Tetteh JP (2011) Morphological and molecular based diversity studies of some cassava (*Manihot esculenta* crantz) germplasm in Ghana. Afr J Biotechnol 10:13900-13908.
- Barakat MN, Al-Doss AA, Elshafei AA, Ghazy AI, Moustafa KA (2013) Assessment of genetic diversity among wheat doubled haploid plants using TRAP markers and morpho-agronomic traits. AJCS 7:104-111.
- Beeching JR, Marmey P, Gavalda M-C, Noirot M, Hayso HR, Hughes MA, Charrier A (1993) An assessment of genetic diversity within a collection of cassava (*Manihot esculenta* Crantz) germplasm using molecular markers. Ann. Botany 72:515-520.
- Blair MW, Fregene MA, Beebe SE, Ceballos, H (2007) Marker-assisted selection in common beans and cassava. In: Guimarães E, Ruane J, Scherf B, Sonnino A, Dargie A. Marker-assisted selection. Current status and future perspectives in crops, livestock, forestry and fish. (eds.) FAO, Rome. 81-116.
- Chavarriaga-Aguirre P, Halsey, M (2005) Cassava (*Manihot esculenta* Crantz):

 Reproductive biology and practices for confinement of experimental field trials. Report prepared for the Program for Biosafety Systems.

 Washington, D.C.: Program for Biosafety Systems

- Chen J, Hu J, Vick BA, Jan CC (2006) Molecular mapping of a nuclear malesterility gene in sunflower (*Helianthus annuus* L.) using TRAP and SSR markers. Theor Appl Genet 113:122–127.
- Chen X, Xia Z, Fu Y, Lu C, Wang W (2010) Constructing a genetic linkage map using an F1 population of non-inbred parents in cassava (*Manihot esculenta* Crantz). Plant Mol Biol Rept 28:676–683.
- Colombo C, Second G, Charrier A (2000) Diversity within American cassava germplasm based on RAPD markers. Genet. Mol. Biol. 23: 189-199.
- Deng Z, Goktepe F, Harbaugh BK (2007) Assessment of genetic diversity and relationships among Caladium cultivars and species using molecular markers. J. Am. Soc. Hort. Sci. 132:219–229.
- Doyle JJ, Doyle JL (1987) Isolation of plant DNA from fresh tissue. Focus 12:13-15.
- Elias M, Panaud O, Robert T (2000) Assessment of genetic variability in a traditional cassava (*Manihot esculenta* Crantz) farming system, using AFLP markers. Heredity 85:219–230.
- Emanuelli F, Lorenzi S, Grzeskowiak L, Catalano V, Stefanini M, Troggio M, Myles S, Martinez-Zapater JM, Zyprian E, Moreira FM, Grando ME (2013) Genetic diversity and population STRUCTURE assessed by SSR and SNP markers in a large germplasm collection of grape. BMC Plant Biol 13:39.
- Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol. Ecol. 14:2611-2620.
- Falush D, Stephens M, Pritchard JK (2003) Inference of Population Structure Using Multilocus Genotype Data: Linked Loci and Correlated Allele Frequencies. Genetics 164:1567–1587.
- Falush D, Stephens M, Pritchard JK (2007) Inference of population structure using multilocus genotype data: dominant markers and null alleles. Mol Ecol Notes 7:574-578.
- FAO Food and Agriculture Organization of the United Nations. FAOSTAT database. Disponível em http://faostat3.fao.org/faostat-gateway/go/to/download/Q/QC/E. Acesso em: 31 Junho 2014.

- Ferguson ME, Hearne SJ, Close TJ, Wanamaker S, Moskal WA, Town CD, de Young J, Marri PR, Rabbi IY, de Villiers EP (2012) Identification, validation and high-throughput genotyping of transcribed gene SNPs in cassava. Theor Appl Genet 124:685-695.
- Foster JT, Allan GJ, Chan AP, Rabinowicz PD, Ravel J, Jackson PJ, Keim P (2010) Single nucleotide polymorphisms for assessing genetic diversity in castor bean (*Ricinus communis*). BMC Plant Biol 10:13.
- Fregene M, Angel F, Gomez R, Rodriguez F, Chavarriaga P, Roca W, Tohme J, Bonierbale M. (1997) A molecular genetic map of cassava (*Manihot esculenta* Crantz). Theor Appl Genet 95:431-441.
- Fregene M, Bernal A, Duque M, Dixon A, Tohme J (2000) AFLP analysis of African cassava (*Manihot esculenta* Crantz.) germplasm resistant to the Cassava Mosaic Disease (CMD). Theor Appl Genet 100:678–685.
- Fregene MA, Suarez M, Mkumbira J, Kulembeka H, Ndedya E, Kulaya A, Mitchel S, Gullberg U, Rosling H, Ago D, Kresovich S (2003) Simple sequence repeat marker diversity in cassava landraces: genetic diversity and differentiation in an asexually propagated crop. Theor Appl Genet 107:1083-1093.
- Gibbons A (1990) New view of early Amazonia. Science 248:1488-1490.
- Gowda M, Zhao Y, Würschum T, Longin CFH, Miedaner T, Ebmeyer E, Schachschneider R, Kazman E, Schacht J, Martinant J-P, Mette MF, Reif JC (2014) Relatedness severely impacts accuracy of marker-assisted selection for disease resistance in hybrid wheat. Heredity 112:552-561
- Hazekamp T (2002) The potential role of passport data in the conservation and use of plant genetic resources. In: Engels JMM, Ramanatha Rao V, Brown AHD and Jackson MT (eds.) Managing Plant Genetic Diversity. IPGRI, Rome, Italy. 185-194.
- Hu J, Beiquan M, Vick BA (2007) Genetic diversity of 38 spinach (*Spinacia oleracea* L.) germplasm accessions and 10 commercial hybrids assessed by TRAP markers. Genet Resour Crop Evol 54:1667-1674.
- Hu J, Vick BA (2003) Target region amplification polymorphism: a novel marker technique for plant genotyping. Plant Mol Biol Rept 2:289-294.

- Hubisz MJ, Falush D, Stephens M, Pritchard JK (2009) Inferring weak population structure with the assistance of sample group information. Mol Ecol Res 9:1322-133.
- Hurtado P, Olsen KM, Buitrago C, Ospina C, Marin J, Duque M, De Vicente C, Wongtiem P, Wenzel P, Killian A, Adeleke M, Fregene M (2008) Comparison of simple sequence repeat (SSR) and diversity array technology (DArT) markers for assessing genetic diversity in cassava (*Manihot esculenta* Crantz). Plant Genet. Resour 6:208-214.
- Kawuki RS, Ferguson M, Labuschagne M, Herselman L, Kim DJ (2009) Identification, characterisation and application of single nucleotide polymorphisms for diversity assessment in cassava (*Manihot esculenta* Crantz). Mol Breed 23:669–684.
- Kunkeaw S, Tangphatsornruang S, Smith DR, Triwitayakorn K (2010) Genetic linkage map of cassava (*Manihot esculenta* Crantz) based on AFLP and SSR markers. Plant Breed 129:112–115.
- Kunkeaw S, Yoocha T, Sraphet S, Boonchanawiwat A, Boonseng O, Lightfoot DA, Triwitayakorn K, Tangphatsornruang S (2011) Construction of a genetic linkage map using simple sequence repeat markers from expressed sequence tags for cassava (*Manihot esculenta* Crantz). Mol Breed 27:67–75.
- Kwon SJ, Hu J, Coyne CJ (2010) Genetic diversity and relationship among Faba bean (*Vicia faba* L.) germplasm entries as revealed by TRAP markers. Plant Genet. Resour. Char. Util. 8:204-213.
- Lado B, Matus I, Rodriquez A, Inostroza L, Poland J, Belzile F, del Pozo A, Quincke M, von Zitzewitz, J (2013) Increased genomic prediction accuracy through spatial adjustment of field trial data. G3 3:2105-2114.
- Laurentin HE, Karlovsky P. (2006) Genetic relationship and diversity in a sesame (Sesamum indicum L.) germplasm collection using amplified fragment length polymorphism (AFLP). BMC Genet 7:10
- Li G, Quiros CF (2001) Sequence-related amplified polymorphism (SRAP), a new marker system based on a simple PCR reaction: its application to mapping and gene tagging in Brassica. Theor Appl Genet 103:455-461
- Lokko Y, Anderson JV, Rudd S, Raji A, Horvath D, Mikel MA, Kim R, Liu L, Hernandez A, Dixon AG, Ingelbrecht IL (2007) Characterization of an

- 18,166 EST dataset for cassava (*Manihot esculenta* Crantz) enriched for drought-responsive genes. Plant Cell Rep 26:1605-1618.
- Lopez C, Jorge V, Piegu B, Mba C, Cortes D, Restrepo S, Soto M, Laudié M, Berger C, Cooke R, Delseny M, Tohme J, Verdier V (2004) A unigene catalogue of 5700 expressed genes in cassava. Plant Mol Biol 56: 541-554.
- Luo C, Zhang F, Zhang QL, Guo DY, Luo ZR (2013) Characterization and comparison of EST-SSR and TRAP markers for genetic analysis of the Japanese persimmon *Diospyros kaki*. Genet. Mol. Res 12:2841-2851
- Marmey P, Beeching J, Hamon S, Charrier A (1993) Evaluation of cassava (*Manihot esculenta* Crantz.) germplasm using RAPD markers. Euphytica 74: 203-209.
- Marsjan PA, Oldenbroek JK (2007) Molecular Markers, a tool for exploring genetic diversity. In: The State of the World's Animal Genetic Resources for Food and Agriculture. FAO Research report, Rome, 359-379.
- Menzo V, Giancaspro A, Giove S, Nigro D, Zacheo S, Colasuonno P, Marcotuli I, Incerti O, Blanco A, Gadaleta A (2013) TRAP molecular markers as a system for saturation of the genetic map of durum wheat. Euphytica 194:151-160.
- Mezette TF, Blumer CG, Veasey EA (2013) Morphological and molecular diversity among cassava genotypes. Pesq. agropec. bras. 48:510-518.
- Moyib OK, Mkumbira J, Odunola AO, Dixon AG (2012) Gene diversity and identification of putative hybridizing parents for root rot resistance in cassava using simple sequence repeats. Int. J. Biotechnol. Mol. Biol. Res. 4:47-56.
- Mühlen GS, Martins PS, Ando A (2000) Variabilidade genética de etnovariedades de mandioca, avaliada por marcadores de DNA. Sci. Agric. 57:319-328.
- Olsen KM (2004) SNPs, SSRs and inferences on cassava's origin. Plant Mol Biol 6:517–526.
- Olsen KM, Schaal BA (2001) Microsatellite variation in cassava (*Manihot esculenta*, *Euphorbiaceae*) and its wild relatives: Further evidence for a Southern Amazonian origin of domestication. Am J Bot 88:131-142.

- Phuthero FG, (1993) Rapid purification of high-activity Taq DNA Polymerase. Nucl. Acids Res. 21:4850-4851.
- Paliwal R, Singh R, Singh AK, Kumar S, Kumar A, Majumdar RS (2013) Molecular Characterization of Giloe (*Tinospora cordifolia* Willd. Miers ex Hook. F. and Thoms.) accessions using Start Codon Targeted (SCoT) markers. Int. J.Med. Arom. Plants 3:413-422.
- Pariyo A, Tukamuhabwa P, Baguma Y, Kawuki RS, Alicai T, Gibson P, Kanju E, Wanjala BW, Harvey J, Nzuki I, Rabbi IY, Ferguson M (2013) Simple sequence repeat (SSR) diversity of cassava in South, East and Central Africa in relation to resistance to cassava brown streak disease. Afr J Biotechnol 12:4453-4464.
- Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288-295.
- Peakall R, Smouse PE (2012) GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics 28:2537-2539.
- Pérez-de-Castro AM, Vilanova S, Cañizares J, Pascual L, Blanca JM, Díez MJ, Prohens J, Picó B. (2012) Application of genomic tools in plant breeding. Curr Genomics13:179–195.
- Prevost A, Wilkinson MJ (1999) A new system of comparing PCR primers applied to ISSR fingerprinting of potato cultivars. Theor Appl Genet 98:107–112.
- Pritchard JK, Stephens M, Donnelly P (2000) Inference of population STRUCTURE using multilocus genotype data. Genetics 155: 945–959.
- Rabbi IY, Kulembeka HP, Masumba E, Marri PR, Ferguson M (2012) An EST-derived SNP and SSR genetic linkage map of cassava (*Manihot esculenta* Crantz). Theor Appl Genet 125: 329–342.
- Raji AA, Anderson JV, Kolade OA, Ugwu CD, Dixon AGO, Ingelbrecht IL (2009a) Gene-based microsatellites for cassava (*Manihot esculenta* Crantz): prevalence, polymorphisms, and cross-taxa utility. BMC Plant Biol 9:1-11.
- Raji AAJ, Fawole I, Gedil1 M, Dixon AGO (2009b) Genetic differentiation analysis of African cassava (*Manihot esculenta*) landraces and elite

- germplasm using amplified fragment length polymorphism and simple sequence repeat markers. Ann ApplBiol 155:187-199.
- Ramanatha R, Hodgkin T (2002) Genetic diversity and conservation and utilization of plant genetic resources. Plant Cell Tiss Organ Cult 68:1-19.
- Roa AC, Maya MM, Duque MC, Tohme J, Allem A, Bonierbale MW (1997) AFLP analysis of relationships among cassava and other *Manihot* species. Theor Appl Genet 95:745–750.
- Rodriguez-Ramilo ST, Toro MA, Caballero A, Fernandez J (2007) The accuracy of a heritability estimator using molecular information. Conserv. Genet. 8:1189–1198.
- Rozen S, Skaletsky HJ (2000) Primer 3 on the WWW for general users and for biologist programmers. In: Krawetz, S.; Misener, S. (ed.) Bioinformatics methods and protocols: Methods in molecular biology. P Humana Press, Totowa, NJ. 365-386.
- Sakurai T, Plata G, Rodriguez-Zapata F, Seki M, Salcedo A, Atsushi T, Ishiwata A, Tohme J, Sakaki Y, Shinozaki K, Ishitani M (2007) Sequencing analysis of 20,000 full-length cDNA clones from cassava reveals lineage specific expansions in gene families related to stress response. BMC Plant Biol 7:66.
- Schreier AD, Mahardja B, May B (2012) Hierarchical patterns of population STRUCTURE in the endangered Fraser River white sturgeon (*Acipenser transmontanus*) and implications for Conservation. Can. J. Fish. Aquat. Sci. 69:1968–1980.
- Silva RM, Bandel G, Martins OS (2003) Mating system in an experimental garden composed of cassava (*Manihot esculenta* Crantz) ethnovarieties. Euphytica 134:127–135.
- Sraphet S, Boonchanawiwat A, Thanyasiriwat T, Boonseng O, Tabata S, Sasamoto S, Shirasawa K, Isobe S, Lightfoot DA, Tangphatsornruang S, Triwitayakorn K (2011) SSR and EST-SSR-based genetic linkage map of cassava (*Manihot esculenta* Crantz). Theor Appl Genet 122:1161–1170.
- Suman A, Ali K, Arro J, Parco AS, Kimbeng CA, Baisakh N (2012) Molecular diversity among members of the saccharum complex assessed using TRAP markers based on lignin-related. Genes Bio Energy Res 5:197-205.

- Twito T, Weigend S, Blum S, Granevitze Z, Feldman M, Perl-Treves R, Lavi U, Hillel J (2007) Biodiversity of 20 chicken breeds assessed by SNPs located in gene regions. Cytogenet. Genome Res. 117:319-326.
- Vieira EA, Fialho JF, Faleiro FG, Bellon G, Fonseca KG, Carvalho LJCB, Silva MS (2010) Caracterização molecular e variabilidade genética de acessos elite de mandioca para fins industriais. Cienc. Rural 40:2467-2471.
- Wang Z, Kang M, Liu H, Gao J, Zhang Z, Li L, Wu R, Pang X (2014) High-level genetic diversity and complex population STRUCTURE of siberian apricot (*Prunus sibirica* L.) in China as revealed by nuclear SSR markers. PLoS ONE 9:2.
- Weir, BS (1990) Genetic Data Analysis: Methods for Discrete Population Genetic Data. Sinauer Associates, Sunderland, MA.
- Xia L, Peng K, Yang S, Wenzl P, de Vicente MC, Fregene M, Kilian A (2005)

 DArT for high-throughput genotyping of Cassava (*Manihot esculenta*) and its wild relatives. Theor Appl Genet 110:1092-1098.
- Zacarias A, Botha A, Labuschagne M, Benesi I (2004) Characterisation and genetic distance analysis of cassava (*Manihot esculenta* Crantz.) germplasm from Mozambique using RAPD fingerprinting. Euphytica 138:49–53.
- Zhang N, Yuan S, Yang W, Liu D (2010) Identification of Lr24 with targeted region amplified polymorphism (TRAP) analysis in wheat. Front. Agric. China 4:18–23.
- Zou M, Xia Z, Ling P, Zhang Y, Chen X, Wei Z, Bo W, Wang W (2011) Mining EST-Derived SSR markers to assess genetic diversity in cassava (*Manihot esculenta* Crantz). Plant Mol Biol 29:961-971.

CAPÍTULO 2

SELEÇÃO ASSISTIDA POR MARCADORES MOLECULARES PARA RESISTÊNCIA AO CASSAVA MOSAIC DISEASE NA CULTURA DA MANDIOCA⁴

⁴ O artigo será submetido ao comitê editorial do periódico científico Scientia Agricola

SELEÇÃO ASSISTIDA POR MARCADORES MOLECULARES PARA RESISTÊNCIA AO CASSAVA MOSAIC DISEASE NA CULTURA DA MANDIOCA

Resumo - O complexo de geminivirus conhecido como Cassava Mosaic disease (CMD) é uma das viroses mais devastadoras da cultura da mandioca (Manihot esculenta Crantz). O objetivo deste trabalho foi utilizar a seleção assistida por marcadores moleculares (SAM) para identificar potenciais acessos resistentes ao CMD, bem como indicar cruzamentos promissores com variedades elites do Brasil. Foram genotipados 1.274 acessos com cinco marcadores moleculares (NS169, NS158, SSRY028, SSRY040 e RME1) associados à resistência ao CMD, e 402 SNPs (Single-Nucleotide Polymorphism). A indicação dos cruzamentos promissores foi feita com a análise discriminante de componentes principais (ADCP) e com a matriz de parentesco genômico calculadas com marcadores SNPs. identificados acessos de M. esculenta com o gene CMD1, descrito em M. glaziovii. Por outro lado, observou-se 5,03; 3,58 e 5,12% dos acessos com os marcadores flanqueadores do gene CMD2: NS169+RME1, NS158+RME1 e SSRY28+RME1, respectivamente. Apenas sete acessos (0,55%) apresentaram todas as marcas relacionadas. A ADCP dos sete acessos juntamente com 17 variedades elite de mandioca indicou a formação de três grupos de divergência. As potenciais fontes de resistência ao CMD foram alocadas em dois grupos, enquanto as variedades elite foram distribuídas nos três grupos. As baixas estimativas de parentesco genômico (variação de -0,167 a 0,681, média de 0,076), contribuíram para o sucesso na identificação de genótipos contrastantes. Dez variedades elite foram indicadas para cruzamento com as fontes de resistência ao CMD. O uso da SAM em países onde o CMD é uma doença quarentenária constitui-se numa estratégia de sucesso, não somente para identificação de acessos resistentes, mas também por orientar os cruzamentos promissores.

Termos para indexação: Manihot esculenta; melhoramento; doença; virose.

MOLECULAR-ASSISTED SELECTION FOR RESISTANCE TO CASSAVA MOSAIC DISEASE IN CASSAVA

Abstract - The geminiviruses complex known as cassava mosaic disease (CMD) is one of the most devastating viruses for cassava (Manihot esculenta Crantz). The objective of this study was to use molecular-assisted selection (MAS) to identify CMD resistant accessions and indicate promising crosses with Brazilian elite varieties. One thousand and seven hundred twenty-four accessions were genotyped using five molecular markers (NS169, NS158, SSRY028, SSRY040 and RME1) associated with resistance to CMD, along with 402 SNPs (single-nucleotide polymorphism). The promising crosses were pointed out using discriminant analysis of main component (DAPC) and the matrix of genomic relationship estimated with SNPs markers. The CMD1 gene previously described in M. glaziovii was not found in accessions of M. esculenta. In contrast, it was found 5.03; 3.58 and 5.12% of cassava accessions with markers flanking the CMD2 gene: NS169+RME1, NS158+RME1 and SSRY28+RME1, respectively. Only seven accessions (0.55%) presented all markers linked to the CMD resistance. The DAPC of the seven accessions along with 17 cassava elite varieties indicated the formation of three divergent clusters. Potential sources of resistance to CMD were divided into two groups, while the elite varieties were distributed in three groups. The low estimates on genomic relationship (range of -0.167 to 0.681, average of 0.076), contributed to the success in identifying contrasting genotypes. Ten elite varieties were suitable for crossing with the potential sources of resistance to CMD. The use of SAM in countries where the CMD is a guarantine disease constitutes a successful strategy, not only for identifying the resistant accessions, but also for guiding the promising crosses.

Index terms: *Manihot esculenta*; breeding; disease; virus.

INTRODUÇÃO

A mandioca (*Manihot esculenta* Crantz) é uma cultura com crescente importância no mundo tropical, sendo um produto básico na alimentação de uma parcela da população brasileira, e em alguns países do continente africano, a cultura é considerada de segurança alimentar. A mandioca tem forte presença na África tropical, Ásia e América Latina e é o quarto cultivo mundial mais importante nos países em desenvolvimento, com uma produção estimada em mais de 276 milhões de toneladas em 2013 (FAO 2014). Por outro lado, a produtividade média mundial 12,88 t.ha⁻¹ é cerca de 6x menor do que o potencial da cultura (Oliveira et al. 2012). Um dos principais fatores que contribuem para esta baixa produtividade na cultura da mandioca é o ataque de doenças.

Dentre as principais doenças da mandioca em nível mundial, sobretudo no continente africano, destacam-se as viroses conhecidas como *Cassava Mosaic disease* – CMD (Legg e Thresh 2000; Legg e Fauquet 2004). O agente causal do CMD está relacionado a várias espécies de *Cassava Mosaic Geminiviruses* – CMGs (família Geminiviridae: Gênero: Begomovirus) e algumas variantes recombinantes (Legg e Fauquet 2004; Bull et al. 2006; Tiendrébéogo et al. 2012).

A doença é caracterizada por sintomas típicos de mosaico, como clorose da folha e posterior deformação diminuindo o crescimento e, por conseguinte a produção da planta (Thresh et al. 1994). O CMD é transmitido pela *Bemisia tabaci* (Genn.) biótipo B em seus diferentes estádios, bem como pelo uso de material propagativo infectado e por ferramentas de corte comumente utilizadas nos tratos culturais da mandioca (De Bruyn et al. 2012). Os prejuízos causados pela doença podem chegar a 100% (Thresh et al. 1994) com estimativas de perdas da produção na África da ordem de US \$440 milhões anuais (Thresh et al. 1997).

Dentre as principais medidas de controle do CMD o uso de variedades resistentes é a solução mais eficaz, porque reduz as perdas de produção causadas pela doença e também reduz a fonte de inoculo nas lavouras especialmente em variedades que suprimem acúmulo de vírus (Rabbi et al. 2014). O complexo de CMGs relacionado ao CMD não foi relatado nas

Américas, embora o inseto vetor esteja presente na região (Herrera Campo et al. 2011). Portanto, mesmo não sendo um problema atual no Brasil, a intensa troca de materiais propagativos entre países e as condições favoráveis ao estabelecimento da virose no Brasil justificam o direcionamento das atividades de pesquisa relacionadas à identificação preventiva de fontes de resistência e ao desenvolvimento de programas de melhoramento genético específicos. Contudo, a proibição quarentenária no Brasil, impede a realização de inoculações artificiais em condições controladas e especialmente em campo visando à identificação de fontes de resistência ao CMD. Por outro lado, sendo uma doença controlada por poucos genes de efeito dominante, é possível implementar a seleção assistida por marcadores moleculares (SAM) visando à seleção indireta de genótipos resistentes na ausência do patógeno. De fato, fontes de resistência contra quase todas as espécies de CMGs foram encontradas em variedades locais na Nigéria e outros países do Oeste Africano na década de 80, sendo denominadas série *Tropical Manihot esculenta* (TME) (Fregene et al. 2001; Akano et al. 2002).

Os primeiros marcadores associados ao CMD foram relatados por Fregene e Puonti-Kaerlas. (2002), que descreveram o microssatélite SSRY40 ligado ao gene CMD1. Posteriormente, Akano et al. (2002) identificaram um marcador microssatélite (SSRY28) e um Restriction Fragment Length Polymorphisms - RFLP (GY1) flanqueando o locus CMD2 a 9 e 8 cM de distância, respectivamente. Outros marcadores foram associados ao CMD2, como o microssatélite SSRY106 e o Amplified Fragment Length Polymorphism - AFLP E-ACC/M-CTC (Lokko et al. 2005), o Sequence-Characterized Amplified Region - SCAR RME1 (Fregene et al. 2006) e os microssatélites NS158 (Fregene et al. 2006) e NS169 (Okogbenin et al. 2007). Além disso, o marcador microssatélite NS198 foi associado a um terceiro alelo de resistência chamado CMD3 (Okogbenin et al. 2012). Em função dos resultados destas pesquisas, o uso da SAM para seleção de plantas resistentes ao CMD em populações segregantes de mandioca tem sido relatado na literatura, como uma estratégia importante e rotineira nos programas de melhoramento (Okogbenin et al. 2007; Okogbenin et al. 2012; Ribeiro et al. 2012).

A maioria dos trabalhos relacionados ao desenvolvimento de variedades de mandioca resistentes ao CMD foi realizada em países africanos, sobretudo por ser uma doença endêmica que ocasiona importantes perdas econômicas. Diante da perspectiva da chegada e estabelecimento da doença no Brasil, é premente a necessidade de direcionar esforços para a identificação preventiva de fontes de resistência, a exemplo do que vem sendo feito na África. Assim, o objetivo deste trabalho foi identificar fontes de resistência ao CMD no germoplasma de mandioca da América Latina, com uso de marcadores moleculares associados à doença, além de sugerir cruzamentos contrastantes com variedades elites para geração de populações segregantes.

MATERIAL E MÉTODOS

Material vegetal

A identificação de fontes de resistência ao CMD foi realizada utilizando 1.274 acessos de germoplasma pertencentes ao Banco Ativo de Germoplasma de Mandioca (BAG-Mandioca) da Embrapa Mandioca e Fruticultura (Cruz das Almas, Brasil), procedentes de vários ecossistemas do Brasil, bem como da Colômbia, Venezuela e Nigéria (Suplemento 1). Este banco é formado por variedades locais e melhoradas resultante de procedimentos convencionais de melhoramento, tais como cruzamento e seleção, bem como pela seleção de variedades locais de alto potencial produtivo identificadas por agricultores ou instituições de pesquisa.

A variedade TME-14 descrita pelo *International Institute of Tropical Agriculture* (IITA) da Nigéria (dados de passaporte disponível em: http://genebank.iita.org/), previamente reportada como altamente resistente ao CMD, foi utilizada como testemunha para presença dos fragmentos.

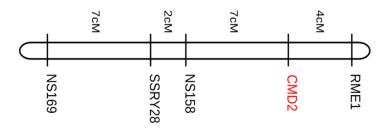
DNA genômico

O DNA genômico foi extraído segundo protocolo CTAB (brometo de cetiltrimetilamônio) conforme metodologia Doyle e Doyle (1987). Com o intuito de avaliar a integridade do DNA e padronizar sua concentração, realizou-se quantificação em gel de agarose 1,0% (p/v) corado com brometo de etídio (1,0 mg.L⁻¹) por comparação visual com uma série de concentrações de DNA fago Lambida (Invitrogen, Carlsbad, CA).

Seleção assistida por marcadores moleculares

Os marcadores moleculares utilizados na SAM para identificação de potenciais fontes de resistência foram um marcador RME1 (Fregene et al. 2006) do tipo SCAR e quatro microssatélites NS158 (Fregene et al. 2006), NS169 (Okogbenin et al. 2012), SSRY28 (Akano et al 2002) e SSRY40 (Mba et al 2001) (Tabela 1), enquanto o mapa de ligação dos marcadores associados ao *CMD2* é apresentado na Figura 1.

Tabela 1. Relação e sequência dos iniciadores utilizados na seleção assistida para resistência ao *Cassava Mosaic Disease* (CMD), bem como sua localização no genoma e tamanho do alelo esperado (TAE).


Gene	Iniciador	Localização (Scaffold)	Sequência do iniciador	TAE (pb)				
71			TGCATCATGGTCCACTCACT					
CMD1	SSRY40	06352*	CATTCTTTTCGGCATTCCAT	293				
	NS158	06906**	GTGCGAAATGGAAATCAATG	166				
	110100	00900	TGAAATAGTGATACATGCAAAAGGA	100				
	NS169	06906**	GTGCGAAATGGAAATCAATG					
CMD2	143109	00900	GCCTTCTCAGCATATGGAGC	319				
C	SSRY28	05214**	TTGACATGAGTGATATTTTCTTGAG	180				
	33K120	05214	GCTGCGTGCAAAACTAAAAT	100				
	DME1	Não	ATGTTAATGTAATGAAAGAGC	700				
	RME1	1 12 1	AGAAGAGGTAGGAGTTATGT	700				

^{*} De acordo Whankaew et al (2011); **De acordo com Rabbi et al. (2014).

As reações de amplificação foram realizadas em volume final de 15µL contendo 10 ng de DNA, tampão de PCR 1X, 1,5 a 2,5 mM de MgCl₂, 0,2 mM de dNTP, 0,2 uM de cada iniciador e 1,0U da Taq DNA Polimerase (Phuthero, 1993). O programa de amplificação consistiu de um ciclo a 94 °C por 5 min; 27 a 30 ciclos a 94 °C por 40 s, 55, 56 ou 58°C por 40 s, 72 °C por 60 s; e extensão final a 72 °C por 5 min em termociclador modelo Veriti® 96-well (Applied Biosystems, Foster City, CA). Os produtos amplificados foram submetidos à eletroforese em gel de Agarose 2% p/v (Invitrogen, Carlsbad, CA)

para o marcador RME1 e em gel de Agarose 1000 3% p/v (Invitrogen, Carlsbad, CA) para os marcadores SSRY28, SSRY40, NS169 e NS158. A eletroforese foi realizada em tampão TBE 0,5x (45 mM Tris-borate, 1,0 mM EDTA) e a visualização dos fragmentos foi feita com uso de brometo de etídeo (1,0 mg.L⁻¹) por meio de fotodocumentador (Vilber Lourmat, Marne la Vallée, France). O tamanho dos fragmentos foi determinado visualmente com marcador de peso molecular 50 pb (Ludwig Biotec, Alvorada, Brazil) e 100pb (New England Biolabs, Beverly, MA).

Os acessos de mandioca foram classificados como possuidores dos alelos associados à resistência ao CMD (sendo considerados resistentes - R) ou com amplificação de outros alelos (sendo considerados suscetíveis - S) de acordo com a presença ou ausência, respectivamente, do alelo associado à doença.

Figura 1. Mapa de ligação dos marcadores associados ao *CMD2*, adaptado de Akano et al. (2002), Fregene et al. (2006) e Mohan et al. (2013). Os números à acima se referem às distâncias genéticas calculadas em cM= centiMorgan.

Identificação de contrastes para geração de populações segregantes

Os acessos de germoplasma contendo os alelos relacionados à resistência ao CMD identificados com uso da SAM, juntamente com dois híbridos elite (9624-09 e 98150-06), nove variedades melhoradas (BRS Aipim Brasil, BRS Caipira, BRS Formosa, BRS Guaíra, BRS Kiriris, BRS Mulatinha, BRS Tapioqueira, BRS Verdinha e Equador 72) e seis variedades locais (Baianinha, Cidade Rica, Irará, Lagoa, Mani Branca e Sergipe) foram analisados com dados anteriores de genotipagem de 402 marcadores do tipo SNPs (Single Nucleotide Polymorphism), obtidos por Oliveira et al. (2014).

As informações dos marcadores SNPs foram utilizadas para proceder ao agrupamento dos acessos potencialmente resistentes ao CMD juntamente com

variedades elite com alto potencial produtivo, qualidade de amido, porte de planta adequado ao sistema mecanizado de plantio, e resistência a doenças foliares como antracnose e bacteriose. Este agrupamento tem como objetivo identificar as combinações de parentais mais contrastantes para a geração de populações segregantes visando o desenvolvimento de variedades nacionais com as características agronômicas supracitadas.

A análise discriminante de componentes principais (ADCP) disponível no pacote *adegenet* para R, versão 3.0.1 (R Development Core Team 2013) foi utilizada para definição dos agrupamentos dos híbridos e variedades elite de mandioca, pois esta técnica não requer uma definição a priori de grupos genéticos (Jombart et al. 2010). Foram utilizados sucessivos agrupamento com o método *K-means* e o Critério de Informação Bayesiano (BIC) para definição do número de grupos, em que *K* com o menor valor BIC representa o número de grupos mais provável para o conjunto de dados em análise. Foram testados valores de *K* de 1 a 10, com 10 corridas para cada *K*. Após definido o número de grupos, foram retidos os eixos da análise de componentes principais que explicam mais de 80% da variância total dos dados.

A matriz de parentesco genômico entre os genótipos de mandioca foi obtida de acordo com vanRaden (2008), na qual $U = \frac{ZZ'}{2\sum p_i(1-p_i)}$, em que Z = M - P, sendo M a matriz dos marcadores e P a matriz das frequências alélicas expressas por $2(p_i - 0.5)$. As estimativas do parentesco genômico foram obtidas com uso da função kin do pacote synbreed (Wimmer et al. 2012) desenvolvido na plataforma R, versão 3.0.1 (R Development Core Team 2013). Estes dados foram utilizados como uma estratégia auxiliar para indicar os cruzamentos mais contrastantes.

RESULTADOS E DISCUSSÃO

Implementação da SAM para resistência ao CMD

Nenhum alelo relacionado ao *CMD1* e associado ao marcador SSRY40 foi encontrado nos acessos de mandioca brasileiros. Este resultado indica ausência de homologia do gene *CMD1* no genoma de *M. esculenta*, tendo em

vista que este gene foi originalmente descoberto na espécie *M. glaziovii* (Jennings 1976). De acordo com os autores, a resistência genética derivada de *M. glaziovii* é do tipo poligênica, com herança recessiva e herdabilidade de 0,60. Híbridos resultantes do cruzamento entre *M. glaziovii* e *M. esculenta* conhecidos como *Tropical Manihot Species* - TMS tem sido utilizados como fonte de resistência ao CMD na África (Legg e Fauquet 2004; Thresh e Cooter 2005), embora os resultados desta introgressão na espécie cultivada não tenham apresentado grande sucesso nos últimos anos (Rabbi et al. 2014).

Em função da ausência de genótipos com o gene *CMD1*, os esforços neste trabalho foram voltados para a identificação de acessos com o gene *CMD2*. O SSRY28 foi o primeiro marcador de herança codominante a ser mapeado próximo do alelo *CMD2* (9 cM) utilizando uma população de mapeamento oriunda do cruzamento entre a variedade local TMe-3 (resistente) e o híbrido TMS30555 (suscetível) (Akano et al. 2002). A variedade TMe-3 é a fonte de original resistência ao CMD, porém no presente trabalho utilizou-se a variedade TMe-14 que é considerada uma duplicata da fonte TMe-3 (Rabbi et al. 2014), cujos resultados da genotipagem confirmaram o tamanho dos alelos relacionados ao gene *CMD2* para todos os marcadores.

A análise individual da presença dos alelos associados ao *CMD2* para os marcadores NS169, NS158, SSRY28 e RME1 demonstrou que 19,29; 15,71; 22,74; e 26,51% dos acessos de mandioca apresentaram os alelos associados à resistência ao CMD (Tabela 2). Por outro lado, a coincidência genotípica dos acessos de mandioca em relação à resistência ao CMD foi bastante variável, de acordo com os marcadores utilizados (Tabela 3).

A coincidência genotípica em relação ao suposto comportamento dos acessos de mandioca foi maior (0,74) para os marcadores NS158 x NS169 e NS158 x SSRY28. A eficiência da SAM depende da proximidade da marca ao gene de interesse, cujas distâncias são estimadas por análise de recombinação gênica. De fato, a distância entre os marcadores NS158 x SSRY28 e NS158 x NS169 é relativamente pequena, i.e., 2 cM (Mohan et al. 2013) e 9 cM (Fregene et al. 2006), respectivamente (Figura 1). Isto certamente contribui para que haja menor taxa de recombinações entre estes marcadores. Além disso, os marcadores NS158 e NS169 estão ancorados no mesmo *scaffold*

(Rabbi et al. 2014), o que reforça a ligação física entre estes marcadores no genoma de *M. esculenta*.

Tabela 2. Número de acessos do Banco Ativo de Germoplasma de Mandioca que apresentam marcas ligadas ao gene *CMD2* que confere resistência ao *Cassava Mosaic Disease* (CMD).

	Genótipos contend	lo simultaneamente
Marcadores	alelos relaciona	dos à resistência
	Total	%
NS169	206	19,29
NS158	173	15,71
SSRY28	236	22,74
RME1	267	26,51
NS169 + RME1	61	5,03
NS158 + RME1	44	3,58
SSRY28 + RME1	62	5,12
NS169 + NS158 + RME1	9	0,71
NS158 + SSRY28 + RME1	16	1,27
NS169 + NS158 + SSRY28 + RME1	7	0,55

Tabela 3. Coincidência de genótipos em relação à presença dos marcadores ligados à resistência ao *Cassava Mosaic Disease* (CMD) nos acessos do Banco Ativo de Germoplasma de Mandioca.

Marcadores	NS169	NS158	SSRY28
NS158	0,74		
SSRY28	0,70	0,74	
RME1	0,72	0,71	0,68

A combinação RME1 x SSRY28 apresentou a menor coincidência genotípica (0,68), enquanto as combinações NS169 x SSRY28, NS169 x RME1, NS158 x RME1 apresentaram coincidências intermediárias (variação de 0,70 a 0,72) (Tabela 3). Por outro lado, a maior distância genética entre os marcadores NS169 x RME1 (20 cM – Figura 1), tenderia a resultar em menor

coincidência genotípica entre os acessos em função da possibilidade de ocorrência histórica de *crossing-over* entre estes marcadores, porém os resultados demonstraram uma coincidência genotípica mediana (Tabela 3).

Ainda considerando a análise de marcadores individuais, Ribeiro et al. (2012) utilizaram as estratégias de hibridação, seleção assistida por marcadores e avaliações da severidade para o CMD em condições de campo, no programa de melhoramento genético de mandioca de Gana. Estes autores demonstraram que a seleção baseada no marcador NS158 resultou na identificação de um maior número de progênies resistentes em comparação ao SSRY28 e RME1.

Embora relatos de Okogbenin et al. (2007) indiquem que o germoplasma de mandioca da América Latina seja bastante suscetível ao CMD, os resultados do presente trabalho indicam que a percentagem de acessos com possível resistência ao CMD possa chegar a mais de 20%, dependendo do marcador. Isto certamente está em acordo com alta variabilidade genética do germoplasma nacional de mandioca, considerando que o Brasil é o seu centro de origem (Olsen e Schaal 2001).

Adicionalmente, maior acurácia no uso da SAM pode ser obtida com uso de marcadores flanqueando o gene de interesse, considerando a menor chance de recombinação entre os marcadores e o gene de interesse (Collard et al. 2005; Collard e Mackill 2008). Assim, considerando as distâncias genéticas (Figura 1) e a estratégia de seleção simultânea de acessos com base no RME1 e demais marcadores, a acurácia de seleção é de 0,987; 0,993 e 0,994 para as combinações RME1 x NS169, RME1 x SSRY28 e RME1 x NS158, respectivamente.

Ao utilizar esta estratégia, observou-se uma redução de mais de três vezes o número de acessos de mandioca contendo os marcadores associados ao *CMD2*, i.e., 5,03; 3,58 e 5,12% de acessos considerados resistentes para as combinações NS169 + RME1, NS158 + RME1 e SSRY28 + RME1, respectivamente. Por outro lado, a porcentagem de acessos contendo três marcas foi ainda menor, i.e., 0,71 e 1,27%, para NS169 + NS158 + RME1 e NS158 + SSRY28 + RME1, respectivamente. Por fim, a presença dos quatro marcadores foi observada em apenas sete acessos (0,55%) de mandioca (Tabela 2). Genótipos contendo marcas relacionadas ao *CMD2* mostraram-se

resistentes quando avaliados em condições de campo sob infestação natural do patógeno na África (Bi et al. 2010; Okogbenin et al. 2012; Ribeiro et al. 2012) e portanto, a utilização de acessos com mais de um marcador associado ao gene de interesse pode potencializar a seleção de genótipos resistentes em países como o Brasil, na qual o CMD é uma doença quarentenária.

Ao avaliarem progênies BC₁ oriundas de cruzamentos com fontes de resistência ao CMD, Ribeiro et al. (2012) identificaram 82% dos indivíduos com pelo menos um alelo para os marcadores RME1, SSRY28 e NS158, porém apenas 62 indivíduos (28%) apresentaram os três marcadores alelos associados ao gene *CMD2*. Certamente a maior percentagem de indivíduos resistentes ao CMD nesta população BC₁ é devido ao fato de se tratar de populações melhoradas.

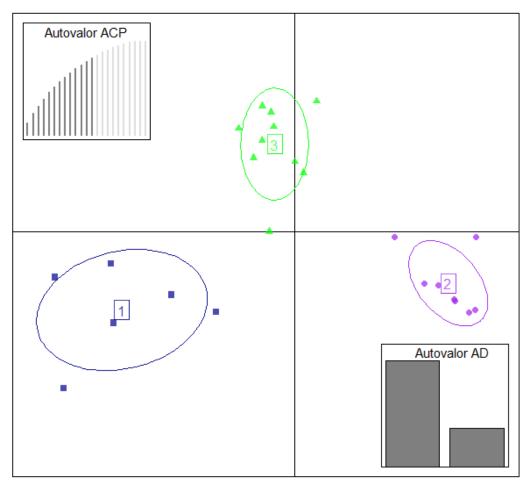
A identificação de resistência em 2.490 genótipos oriundos do programa de melhoramento genético do CIAT, com uso dos marcadores RME1 e NS158 e posterior avaliação em condições de campo em uma área com alta pressão da doença na Nigéria revelou que a acurácia de seleção com base nestes dois marcadores variou de 70 a 80%, dependendo das progênies analisadas (Blair et al. 2007). Em outro estudo Okogbenin et al. (2007) fizeram uma primeira introdução de germoplasma da América Latina na África com materiais oriundos de cruzamentos entre parentais elite do programa de melhoramento do CIAT e uma segunda introdução de materiais selecionados com base na SAM (dois microssatélites e seis SCARs) e posterior avaliação dos genótipos em condições de campo sob infestação natural do CMD na Nigéria. No primeiro conjunto de introduções houve um efeito devastador da doença com infecção de 100% das plantas após um mês de plantio. Porém, os resultados da segunda introdução indicaram que a introgressão do gene CMD2 no germoplasma de mandioca da América Latina via SAM, proporcionou alta resistência em condições de campo, com 67,3% dos genótipos possuindo notas de 1 a 2 (escala de nota na qual 1 = plantas resistentes e 5 = plantas altamente suscetíveis). Portanto, o uso da SAM pode apresentar uma alta eficiência na indicação de genótipos de mandioca com resistência comprovada em condições de campo. Isto certamente se deve à natureza dominante do gene *CMD2* e sua eficácia contra uma ampla gama de cepas virais.

De fato a introdução do gene *CMD2* em germoplasma diversos parece ser a estratégia de controle mais efetivo contra o CMD, uma vez que a incorporação do gene *CMD1* em germoplasma exótico e posterior teste de campo na África indicou que a incorporação do *CMD1* não foi efetiva por se tratar de um gene de efeito menor de natureza quantitativa (Fregene et al. 2006; Okogbenin et al. 2007). Por outro lado, o uso do gene dominante *CMD2* foi bem sucedido na transferência de genes de resistência a genótipos pertencentes à América Latina (Okogbenin et al. 2007).

Análise da diversidade parental disponível para cruzamentos

Os sete acessos de mandioca (BGM0268, BGM0270, BGM0281, BGM0284, BGM0358, BGM0359 e BGM1370) contendo os alelos relacionados ao *CMD2* para os quatro marcadores tratam-se de variedades locais com adaptação limitada ao seu local de origem e, portanto é preciso gerar populações segregantes a partir de cruzamentos destas fontes de resistência ao CMD com variedades elite nacionais visando o desenvolvimento de variedades adaptadas às principais regiões de cultivo e com características agronômicas de interesse. Para maximizar a segregação nas progênies, a escolha de parentais deve combinar características contrastantes, muitas vezes inferidos pela divergência genética. Portanto, a análise da divergência dos 24 genótipos com base na análise discriminante de componentes principais (ADCP) e nas matrizes de parentesco genômico podem indicar os cruzamentos mais contrastantes.

O critério de informação bayesiano (BIC), implementado na ADCP, utilizando as sete fontes de resistência ao CMD e as 17 variedades elite brasileiras, indicou que três grupos de diversidade é o número ótimo para descrever a divergência deste conjunto de materiais (Figura 2). Assim, este número de grupos foi utilizado nas análises subsequentes. A ADCP permite identificar estruturas populacionais complexas com atribuição probabilística dos indivíduos em agrupamentos específicos, sem necessitar de pressuposições a respeito do equilíbrio de Hardy-Weinberg ou desequilíbrio de ligação entre os marcadores, minimizando assim a variação dos agrupamentos (Jombart et al. 2010). A ADCP tem sido utilizada para grande volume de dados, especialmente gerados por marcadores do tipo SNP. Recentemente, a ADCP foi utilizada na


estruturação do germoplasma de *Carica papaya* L. com marcadores microssatélites (Matos et al. 2013) e de mandioca com marcadores SNPs (Oliveira et al. 2014).

Os três grupos de diversidade formados pela ADCP são bastante discrepantes, havendo uma clara separação dos grupos de acordo com a representação das duas primeiras funções lineares (Figura 2). As fontes de resistência ao CMD foram alocadas nos Grupos 1 (BGM0284, BGM0268 e BGM1370) e 2 (BGM0268, BGM0270, BGM0358 e BGM0359). Embora, Rabbi et al. (2014) tenham sugerido que todas as fontes de resistência monogênica na mandioca são derivadas de um único ancestral comum, alguns autores sugerem a existência de outros genes de resistência ao CMD (Bi et al. 2010; Okogbenin et al. 2012). As sete fontes de resistência encontradas no presente trabalho foram claramente alocadas em diferentes grupos de divergência e, portanto indicam a existência de variabilidade genética nestes genótipos não associadas aos locos de resistência, que possivelmente contribuirá para a geração de indivíduos transgressivos a partir dos cruzamentos com as variedades elite. Contudo, não é possível afirmar que se trata de fontes de resistência diferentes daquelas cultivadas na África.

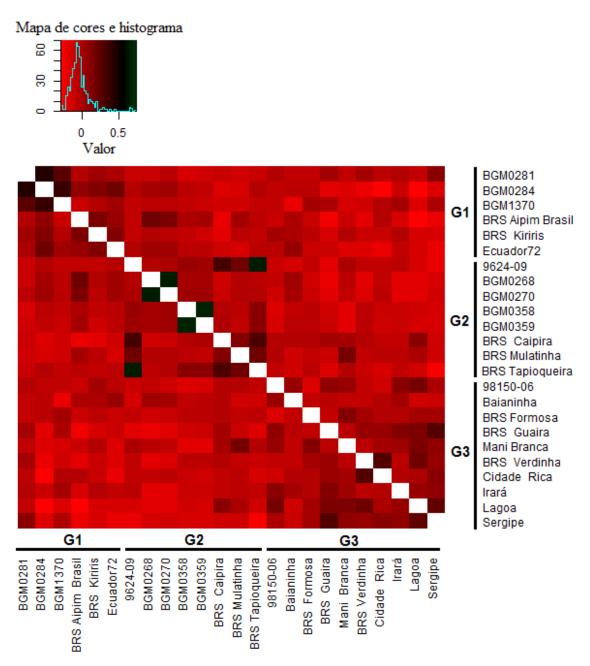
Com relação às variedades elite de mandioca, não houve uma tendência de agrupamento de acordo com o seu grau de melhoramento, pois tanto os híbridos, quanto as variedades melhoradas e variedades locais foram alocadas em diferentes grupos. As variedades BRS Aipim Brasil, BRS Kiriris e Ecuador72 foram agrupadas ao Grupo 1, enquanto o híbrido 9624-09 e as variedades BRS Caipira, BRS Mulatinha e BRS Tapioqueira foram alocadas no Grupo 2. O outro híbrido (98150-06), e as variedades BRS Verdinha, BRS Formosa, BRS Guaira, Baianinha, Mani Branca, Cidade Rica, Irará, Lagoa e Sergipe foram alocadas no Grupo 3 (Figura 3, Tabela 4).

As estimativas de parentesco genômico com base nos marcadores SNPs entre todos os pares de genótipos de mandioca apresentaram variação de -0,167 a 0,681, com média de 0,076 (Figura 3). Os valores negativos de parentesco genômico indicam pares de indivíduos que compartilham poucos alelos em comparação ao esperado com base nas suas frequências alélicas, enquanto valores positivos representam o oposto. Portanto, de modo geral as estimativas obtidas indicam um baixo parentesco entre os indivíduos, o que

certamente contribui para a maximização dos ganhos esperados com a seleção nas populações segregantes a serem geradas.

Figura 2. Gráfico de dispersão do primeiro e segundo componente principal da análise discriminante de componentes principais (ADCP) com base na análise de 24 genótipos de mandioca com 402 marcadores do tipo *Single-Nucleotide Polymorphism* (SNP). Os clusters, representados por números e cores diferentes representam os acessos analisados. Os autovalores da análise de componentes principais (ACP) e análise discriminante (AD) também são apresentados.

De acordo com a Figura 3, as maiores estimativas de parentesco genômico foram observadas entre as fontes de resistência ao CMD: BGM0281 x BGM0284 (0,457) e BGM0284 x BGM1370 (0,373); bem como entre 9624-09 x BRS Caipira (0,334), 9624-09 x BRS Tapioqueira (0,666) e BRS Caipira x BRS Tapioqueira (0,324). Isto é condizente com a ADCP, uma vez que todas


estas combinações de genótipos pertencem ao mesmo grupo. Com base nestes resultados, a recomendação de cruzamentos que envolvam estes genótipos não seria indicada.

A primeira separação dos acessos de mandioca em três grupos, com base na ADCP dos marcadores SNPs, indicou um nível hierárquico a ser utilizado para direcionamento dos possíveis cruzamentos mais contrastantes com base nas informações moleculares. Portanto, levando-se em consideração os agrupamentos formados pela ADCP, a escolha dos melhores cruzamentos entre as fontes de resistência ao CMD e as variedades elite de mandioca mais plantadas no Brasil foi feita considerando as duas combinações mais contrastantes em relação ao parentesco genômico (Tabela 4).

Para as fontes de resistência BGM0284 e BGM1370, pertencentes ao Grupo 1, as combinações de cruzamentos com menor grau de parentesco foram obtidas entre as variedades do Grupo 3 (Tabela 4). Para o acesso BGM0281, as duas combinações genotípicas mais contrastantes foram aquelas com as variedades BRS Mulatinha (-0,109) e BRS Tapioqueira (-0,094), ambas pertencentes ao Grupo 2. Por outro lado, para a fonte BGM0284, as menores estimativas de parentesco foram obtidas com as variedades Cidade Rica (-0,267) e Lagoa (-0,283), enquanto que para a fonte BGM1370 as melhores combinações foram com as variedades Baianinha (-0,202) e Lagoa (-0,168). Mesmo com grau de parentesco mediano, observou-se que as fontes de resistência BGM0281 e BGM0284 apresentaram menor grau de parentesco com diferentes variedades, o que certamente poderá contribuir para aumentar a variabilidade genética nas populações segregantes, carregando desta forma backgrounds genéticos bastante divergentes.

Para as fontes de resistência ao CMD pertencentes ao Grupo 2 (BGM0268, BGM0270, BGM0358 e BGM0359), observou-se maior complementação (menor grau de parentesco genômico) com as variedades pertencentes ao Grupo 3. As melhores combinações de cruzamentos para a fonte BGM0268 foram observadas entre BRS Guaíra (-0,211) e Lagoa (-0,186), enquanto para BGM0270 foram BRS Guaíra e Irará, ambas com o mesmo grau de parentesco (-0,176). Para a fonte BGM0358, as melhores combinações foram entre o híbrido 98150-06 (-0,166) e a variedade Mani Branca (-0,177).

Por outro lado, as combinações com menor grau de parentesco com a fonte BGM0359 foram Mani Branca (-0,178) e Sergipe (-0,146).

Figura 3. Heatmap do parentesco genômico de 24 genótipos de mandioca, com base na análise de 402 marcadores do tipo *Single-Nucleotide Polymorphism* (SNP). Os três agrupamentos formados pela analise discriminante de componentes principais é representada na figura como G1, G2 e G3.

Tabela 4. Estimativas de parentesco genômico entre as sete fontes de resistência ao *Cassava Mosaic Disease* (CMD) e as 17 variedades elite de mandioca. Os cruzamentos selecionados para cada fonte de resistência são apresentados em negrito e sublinhados.

			Fo	ntes de i	resistência ao CMD					
Grup	Variedades elite		Grupo1			Gru	po2			
0	variouados cino	BGM	BGM	BGM	BGM	BGM	BGM	BGM		
	DDO Atain	0281	0284	1370	0268	0270	0358	0359		
	BRS Aipim Brasil	0,018	0,087	0,102	0,192	0,163	0,001	0,013		
1	BRS Kiriris	0,036	0,125	0,032	0,034	0,040	0,059	0,109		
	Ecuador72	0,000	0,210	0,037	0,034	0,045	0,047	0,048		
	9624-09	0,092	0,018	0,063	0,018	0,007	0,069	0,052		
2	BRS Caipira	0,089	0,168	0,117	0,103	0,084	0,032	0,007		
_	BRS Mulatinha	<u>-</u> 0,109	- 0,131	- 0,112	- 0,034	- 0,032	- 0,035	- 0,077		
	BRS Tapioqueira	<u>-</u> 0,094	0,012	, 0,065	0,036	0,025	0,123	0,106		
	98150-06	0,022	0,069	0,074	0,076	- 0,106	<u>-</u> 0,166	- 0,143		
	Baianinha	0,062	0,053	<u>-</u> <u>0,202</u>	0,036	0,023	0,069	0,038		
	BRS Formosa	0,074	0,049	0,027	- 0,104	0,094	0,049	0,043		
	BRS Guaíra	0,028	0,179	0,007	<u>-</u> 0,211	<u>-</u> <u>0,176</u>	- 0,115	0,092		
3	Mani Branca	0,057	0,160	0,125	0,039	0,077	<u>-</u> 0,177	<u>-</u> 0,178		
	BRS Verdinha	0,018	0,205	0,114	0,181	0,162	0,045	0,055		
	Cidade Rica	0,052	<u>-</u> 0,267	0,023	- 0,058	0,047	0,083	- 0,109		
	Irará	0,013	0,100	0,016	- 0,179	<u>-</u> <u>0,176</u>	0,100	0,093		
	Lagoa	0,060	<u>-</u> 0,283	<u>-</u> 0,168	<u>-</u> 0,186	0,175	0,115	0,125		
	Sergipe	0,111	- 0,168	0,004	0,135	- 0,109	- 0,128	<u>-</u> 0,146		

A utilização de genótipos resistentes é boa estratégia a médio e longo prazo para enfrentar o CMD. Contudo, o desenvolvimento de novas variedades de mandioca não deve ser feito com foco exclusivo na introdução do gene *CMD2*, pois existe uma grande preferência dos agricultores por variedades locais ou melhoradas que atendam a características específicas de qualidade e sabor das raízes (quando destinadas ao consumo *in natura*), bem como pela alta produtividade de amido, quando destinada à indústria de amido.

De fato, existem exemplos clássicos na África, na qual variedades resistentes ao CMD foram rejeitadas por agricultores em Uganda, por apresentarem qualidade inferior das raízes quando comparadas às variedades adaptadas localmente (Kawuki et al. 2011). A introgressão de genes de resistência ao CMD em variedades com características desejáveis se torna crucial para adoção das novas variedades, tal como foi feito por outros autores (Okogbenin et al. 2007; Kawuki et al. 2011; Ribeiro et al. 2012).

Por se tratar de uma espécie heterozigótica, certamente haverá uma alta segregação nas progênies F₁ derivadas dos cruzamentos sugeridos no presente trabalho, resultando na geração de genótipos bastante diferentes dos parentais. Contudo, a recombinação de genes presentes nas variedades elite brasileiras já plantadas pelos agricultores representa um avanço importante na criação de novas variedades com backgrounds genéticos divergentes, porém com características desejáveis e já aceitas pelos agricultores e consumidores.

Perspectivas para o melhoramento da mandioca com vistas à resistência ao CMD

Atualmente o CMD não ocorre nas Américas, porém o seu principal inseto vetor (mosca branca) já foi relatado nesta região, enquanto sua forma alternativa, o biótipo B (*B. argentifolia*) é de ocorrência generalizada, e de acordo com Polston e Anderson (1997) a sua gama de hospedeiros inclui a mandioca. Portanto, a perspectiva de chegada da doença no Brasil e de uma possível adaptação de alimentação do biótipo B à mandioca, faz com que os programas de melhoramento genético desenvolvam medidas de prevenção. Assim, a incorporação da resistência ao CMD nas variedades brasileiras tem sido um dos objetivos do programa da Embrapa nos últimos anos.

Em se tratando de uma doença quarentenária no Brasil, a SAM constitui uma das únicas formas de se iniciar a identificação de fontes de resistência na ausência do patógeno. Isto é especialmente válido para culturas de ciclo longo (>12 meses), como é o caso da mandioca, na qual são necessários de 8 a 12 anos para o desenvolvimento de uma variedade, utilizando procedimentos convencionais (Okogbenin et al. 2007; Oliveira et al. 2012). No caso específico do melhoramento da mandioca para resistência ao CMD, a SAM foi utilizada para a identificação inicial das fontes de resistência, enquanto os marcadores SNPs foram utilizados para estimação do parentesco dos indivíduos visando à orientação dos cruzamentos. Após a obtenção das populações segregantes F₁, a SAM será novamente utilizada para identificação dos segregantes com os alelos de resistência ao CMD de forma a reduzir o número de plantas a serem avaliadas na fase de seedlings e etapas subsequentes do processo seletivo. Adicionalmente utilizando a SAM o prazo para a detecção dos genótipos resistentes ao CMD é de apenas dois anos (desde o cruzamento até a obtenção das plantas F₁), contra os oito anos com base no melhoramento convencional (desde o cruzamento até a realização dos ensaios avançados de resistência e produção). Assim, como a mandioca é uma cultura de propagação vegetativa, o uso da SAM permite que os melhoristas concentrem seus esforços apenas nos genótipos identificados como resistentes nas primeiras fases do programa de melhoramento, cujos genótipos estão fixados, e com isso pode-se reduzir o número de ciclos de avaliação. Esta estratégia certamente trará impactos positivos na redução dos ciclos de seleção e com isso nos custos envolvidos na avaliação dos genótipos em condições de campo, a exemplo do que tem sido realizado em outros programas (Blair et al. 2007; Okogbenin et al. 2007; 2012; Ribeiro et al. 2012).

O melhoramento genético de qualquer cultura depende da extensão da variabilidade genética presente no germoplasma, muito embora historicamente os programas de melhoramento de mandioca utilizam poucos parentais nos cruzamentos, sobretudo em função do desconhecimento do potencial agronômico e da variação genética disponível. Neste sentido, os resultados obtidos no presente trabalho em relação à identificação de possíveis fontes de resistência ao CMD, juntamente com a indicação de variedades com características desejáveis como resistência a algumas doenças da parte aérea

(BRS Caipira, BRS Mulatinha, BRS Tapioqueira e BRS Formosa) e das raízes (BRS Kiriris, BRS Aipim Brasil e Mani Branca), resistência a ácaros e percevejos (Ecuador72), alta produtividade de raízes e amido (9624-09, 98150-06, Baianinha, Cidade Rica, Irará, Lagoa e Sergipe) e tolerância ao déficit hídrico (BRS Guaíra, BRS Verdinha), constituem um grande avanço no direcionamento de cruzamentos específicos. Portanto, espera-se que as estratégias de melhoramento preventivo implementada no programa de melhoramento da Embrapa via SAM possa contribuir para reduzir o número de ciclos de seleção necessários para a transferência dos alelos de resistência ao CMD, bem como gerar novas variedades de mandioca com características desejáveis para a indústria e para o consumo *in natura*.

REFERÊNCIAS

- Akano, A.O.; Dixon, A.; Mba, C.; Barrera, E.; Fregene, M. 2002. Genetic mapping of a dominant gene conferring resistance to cassava mosaic disease. Theoretical and Applied Genetics 105: 521-525.
- Bi, H.; Aileni, M.; Zhang, P. 2010. Evaluation of cassava varieties for cassava mosaic disease resistance jointly by agro-inoculation screening and molecular markers. African Journal of Plant Science 4: 330-338.
- Blair, M.W.; Fregene, M.A.; Beebe, S.E.; Ceballos, H. 2007. Marker-assisted selection in common beans and cassava. p.81-115. *In*: Guimarães, E.; Ruane, J.; Scherf, B.; Sonnino, A.; Dargie, J., (eds.) Marker-assisted selection Current status and future perspectives in crops, livestock, forestry and fish. Rome: FAO.
- Bull, S.E.; Briddon, R.W.; Sserubombwe, W.S.; Ngugi, K.; Markham, P.G.; Stanley, J. 2006. Genetic diversity and phylogeography of cassava mosaic viruses in Kenya. Journal of General Virology 87: 3053-3065.
- Collard, B.C.Y.; Jahufer, M.Z.Z.; Brouwer, J.B.; Pang, E.C.K. 2005. An introduction to markers, quantitative trait loci (QTL) mapping and marker-assisted selection for crop improvement: The basic concepts. Euphytica 142:169-196.

- Collard, B.CY.; Mackill, D.J. 2008. Marker-assisted selection: an approach for precision plant breeding in the twenty-first century. Philosophical Transactions of the Royal Society B 363: 557–572.
- De Bruyn, A.; Villemot, J.; Lefeuvre, P.; Villar, E.; Hoareau, M.; Harimalala, M.; Abdoul-Karime, A.L.; Abdou-Chakour, C.; Reynaud, B.; Harkins, G.W.; Varsani, A.; Martin, D.P.; Lett, J. 2012. East African cassava mosaic-like viruses from Africa to Indian ocean islands: molecular diversity, evolutionary history and geographical dissemination of a bipartite begomovirus. BMC Evolutionary Biology 12: 228.
- Doyle, J.J; Doyle, J.L. 1987. Isolation of plant DNA from fresh tissue. Focus, 12:13-15.
- FAO Food and Agriculture Organization. 2012. FAOSTAT database. FAO, Italy. Disponível em: http://faostat.fao.org/site/567/default.aspx#ancor [Acesso em Jan 14, 2014]
- Fregene, M.; Bernal, A.; Duque, M.; Dixon, A.G.O.; Tohme, J. 2000. AFLP analysis of African cassava (*Manihot esculenta* Crantz) germplasm resistant to the cassava mosaic disease (CMD). Theoretical and Applied Genetics 100:678-685.
- Fregene, M.; Morante, N.; Sánchez, T.; Marin, J.; Ospina, C.; Barrera, E.; Gutierrez, J.; Guerrero, J.; Bellotti, A.; Santos, L.; Alzate, A.; Moreno, S.; Ceballos, H. 2006. Molecular markers for introgression of useful traits from wild *Manihot* relatives of cassava, marker-assisted selection (MAS) of disease and root quality traits. Journal of Root Crops 32:1-31.
- Fregene, M.; Okogbenin, E.; Mba, C.; Angel, F.; Suarez, M.C.; Janneth, G.; Chavarriaga, P.; Roca, W.; Bonierbale, M.; Tohme, J. 2001. Genome mapping in cassava improvement: challenges, achievements and opportunities. Euphytica 120:159–165.
- Fregene, M.; Puonti-Kaerlas, J. 2002. Cassava biotechnology. In: R.J. Hillocks, J.M. Thresh and A.C. Bellotti (Eds.), Cassava: Biology, Production and Utilization. CABI Publishing, 179–207.

- Herrera Campo, B.V.; Hyman, G.; Bellotti, A. 2011. Threats to cassava production: known and potential geographic distribution of four key biotic constraints. Food Security 3:329–345.
- Jennings, D.L. 1976. Breeding for Resistance to African Cassava Mosaic Disease: Progress and Prospects. *In*: Interdisiplinary Workshop. IDRC, Muguga (Kenya).
- Jombart, T.; Devillard, S.; Balloux, F. 2010. Discriminant analysis of principal components: a new method for the analysis of genetically STRUCTURE populations. BMC Genetics 11:94.
- Kawuki, R.S.; Pariyo, A.; Amuge, T.; Nuwamanya, E.; Ssemakula, G.; Tumwesigye, S.; Bua, A.; Baguma, Y.; Omongo, C.; Alicai, T.; Orone, J. 2011. A breeding scheme for local adoption of cassava (*Manihot esculenta* Crantz). Journal of Plant Breeding and Crop Science 3:120-130.
- Legg, J.P.; Fauquet, C.M. 2004. Cassava mosaic geminiviruses in Africa. Plant Molecular Biology 56:585–599.
- Legg, J.P.; Thresh, J.M. 2000 Cassava mosaic virus disease in East Africa: a dynamic disease in a changing environment. Virus Research 71:135-149.
- Lokko, Y.; Danquah, E.Y.; Offei, S.K.; Dixon, A.G.O.; Gedil, M.A. 2005. Molecular markers associated with a new source of resistance to the cassava mosaic disease. African Journal of Biotechnology 4:873-881.
- Matos, E.L.S.; Oliveira, E.J., Jesus, O.N.; Dantas, J.L.L. 2013. Microsatellite markers of genetic diversity and population STRUCTURE of *Carica papaya*. Annals of Applied Biology 163:298–310.
- Mba, R.E.C.; Stephenson, P.; Edwards, K.; Melzer, S.; Nkumbira, J.; Gullberg, U.; Apel, K.; Gale, M.; Tohme, J.; Fregene, M. 2001 Simple sequence repeat (SSR) markers survey of the cassava (*Manihot esculenta* Crantz) genome: towards an SSR-based molecular genetic map of cassava. Theoretical and Applied Genetics 102: 21–31.
- Mohan, C.; Shanmugasundaram, P.; Maheswaran, M.; Senthil, N.; Raghu, D.; Unnikrishnan, M. 2013. Mapping new genetic markers associated with CMD

- resistance in cassava (*Manihot esculenta* Crantz) using simple sequence repeat markers. Journal of Agricultural Science 5: 57-65.
- Okogbenin, E.; Egesi, C.N.; Olasanmi, B.; Ogundapo, O.; Kahya, S.; Hurtado, P.; Marin, J.; Akinbo, O.; Mba, C.; Gomez, H.; de Vicente, C.; Baiyeri, S.; Uguru, M.; Ewa, F.; Fregene, M. 2012. Molecular marker analysis and validation of resistance to cassava mosaic disease in elite cassava genotypes in Nigeria. Crop Science 52:2576-2586.
- Okogbenin, E.; Porto, M.C.M.; Egesi, C.; Mba, C.; Ospinosa, E.; Santos, L.G.; Ospina, C.; Marin, J.; Barera, E.; Gutierrez, J.; Ekanayake, I.; Iglesias, C.; Fregene, M. 2007. Marker aided introgression of CMD resistance in Latin American germplasm for genetic improvement of cassava in Africa. Crop Science 47:1895-1904.
- Oliveira, E.J.; Ferreira, C.F.; Santos, V.S.; Jesus, O.N.; Oliveira, G.A.F.; Silva, M.S. 2014. Potential of SNP markers for the characterization of Brazilian cassava germplasm. Theoretical and Applied Genetics 127:1423-1440.
- Oliveira, E.J.; Resende, M.D.V.; Santos, V.S.; Ferreira, C.F.; Oliveira, G.A.F.; Silva, M.S.; Oliveira, L.A.; Aguilar-Vildoso, C.A. 2012. Genome-wide selection in cassava. Euphytica 187:263-276.
- Olsen, K.M.; Schaal, B.A. 2001. Microsatellite variation in cassava (*Manihot esculenta*, Euphorbiaceae) and its wild relatives: further evidence for a southern Amazonian origin of domestication. American Journal of Botany 88:131-142.
- Phuthero, F.G. 1993. Rapid purification of high-activity Taq DNA Polymerase. Nucleic Acids Research 21:4850-4851.
- Polston, J.P.; Anderson, P.K. 1997. The emergence of whitefly-transmitted Gemini viruses in tomato in the Western hemisphere. Plant Disease 81:1358-1369.
- R Core Team. 2013. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Disponível em: http://www.R-project.org/

- Rabbi, I.Y.; Hamblin M. T.; Kumar, P.L.; Gedil, M.A.; Ikpan, A.S.; Jean-Luc Jannink; Kulakow, P.A. 2014. High-resolution mapping of resistance to cassava mosaic geminiviruses in cassava using genotyping-by-sequencing and its implications for breeding. Virus Research 186:87-96.
- Ribeiro, P.F.; Akromah, R.; Manu-Aduening, J. 2012. Using marker assisted selection to hasten screening of cassava cultivars developed through introgression of Cassava Mosaic Disease (CMD) resistance into cassava landraces in Ghana. Journal of Agricultural Science and Technology B 2:74-80.
- Thresh, J.M.; Cooter, R.J. 2005. Strategies for controlling cassava mosaic virus disease in Africa. Plant Pathology 54:587-614.
- Thresh, J.M.; Fargette, D.; Otirn-Nape, G.W. 1994. Effects of African cassava mosaic geminivirus on the yield of cassava. Tropical Science 34:26-42.
- Thresh, J.M.; Otim-Nape, G.W.; Legg, J.P.; Fargette, D. 1997. African cassava mosaic virus disease: The magnitude of the problem. African Journal of Root and Tuber Crops 2:13-18.
- Tiendrébéogo, F.; Lefeuvre, P.; Hoareau, M.; Harimalala, M.A.; De Bruyn, A.; Villemot, J.; SE Traoré, V.; Konaté, G.; Traoré, A.S.; Barro, N.; Reynaud, B.; Traoré, O.; Lett, J. 2012. Evolution of African cassava mosaic virus by recombination between bipartite and monopartite begomoviruses. Virology Journal. 9:67.
- VanRaden, P. 2008. Efficient methods to compute genomic predictions. Journal of Dairy Science 91:4414-4423.
- Wimmer V.; Albrecht, T.; Auinger, H-J.; Schön, C-C. 2012. synbreed: a framework for the analysis of genomic prediction data using R. Bioinformatics 28:2086-2087
- Whankaew, S.; Poopear, S.; Kanjanawattanawong, S.; Tangphatsornruang, S.; Boonseng, O.; Lightfoot, D.A.; Triwitayakorn, K. 2011. A genome scan for quantitative trait loci affecting cyanogenic potential of cassava root in an outbred population. BMC Genomics 12:266.

.

SUPLEMENTO

Suplemento 1: Relação de indivíduos utilizados na genotipagem com os marcadores RME1, NS158, NS169, SSRY028 e SSRY040 relacionados ao gene que confere resistência ao mosaico africano, pertencentes ao Banco de Germoplasma de *Manihot* esculenta Crantz da Embrapa Mandioca e Fruticultura e respectivo local de origem.

N.º	Acessos	Local									
1	BGM0003	Brasil	15	BGM0022	Brasil	29	BGM0038	SE/BR	43	BGM0053	BA/BR
2	BGM0004	BA/BR	16	BGM0023	BA/BR	30	BGM0040	BA/BR	44	BGM0054	PA/BR
3	BGM0005	MG/BR	17	BGM0024	SE/BR	31	BGM0041	Brasil	45	BGM0056	SE/BR
4	BGM0006	MG/BR	18	BGM0025	BA/BR	32	BGM0042	BA/BR	46	BGM0057	Brasil
5	BGM0007	BA/BR	19	BGM0027	Brasil	33	BGM0043	MG/BR	47	BGM0058	Brasil
6	BGM0009	BA/BR	20	BGM0028	BA/BR	34	BGM0044	Brasil	48	BGM0060	Brasil
7	BGM0010	BA/BR	21	BGM0029	BA/BR	35	BGM0045	Brasil	49	BGM0061	PA/BR
8	BGM0011	BA/BR	22	BGM0030	Brasil	36	BGM0046	SP/BR	50	BGM0062	BA/BR
9	BGM0014	BA/BR	23	BGM0031	BA/BR	37	BGM0047	BA/BR	51	BGM0064	BA/BR
10	BGM0016	BA/BR	24	BGM0032	RN/BR	38	BGM0048	BA/BR	52	BGM0065	BA/BR
11	BGM0018	Brasil	25	BGM0033	BA/BR	39	BGM0049	Brasil	53	BGM0066	PA/BR
12	BGM0019	PA/BR	26	BGM0035	RN/BR	40	BGM0050	BA/BR	54	BGM0067	PA/BR
13	BGM0020	SP/BR	27	BGM0036	BA/BR	41	BGM0051	BA/BR	55	BGM0069	BA/BR
14	BGM0021	PA/BR	28	BGM0037	Brasil	42	BGM0052	Brasil	56	BGM0070	PA/BR

N.º	Acessos	Local									
57	BGM0071	NR	80	BGM0104	BA/BR	103	BGM0136	BA/BR	126	BGM0164	BA/BR
58	BGM0072	BA/BR	81	BGM0106	SE/BR	104	BGM0137	BA/BR	127	BGM0165	Brasil
59	BGM0073	BA/BR	82	BGM0109	BA/BR	105	BGM0138	BA/BR	128	BGM0166	BA/BR
60	BGM0074	BA/BR	83	BGM0113	BA/BR	106	BGM0140	BA/BR	129	BGM0167	BA/BR
61	BGM0075	Brasil	84	BGM0115	BA/BR	107	BGM0143	Brasil	130	BGM0168	BA/BR
62	BGM0076	BA/BR	85	BGM0116	BA/BR	108	BGM0144	BA/BR	131	BGM0169	BA/BR
63	BGM0078	BA/BR	86	BGM0117	SE/BR	109	BGM0145	BA/BR	132	BGM0170	Brasil
64	BGM0080	PE/BR	87	BGM0118	SE/BR	110	BGM0146	BA/BR	133	BGM0171	Brasil
65	BGM0082	SC/BR	88	BGM0119	SE/BR	111	BGM0148	BA/BR	134	BGM0173	SE/BR
66	BGM0083	BA/BR	89	BGM0120	BA/BR	112	BGM0149	RJ/BR	135	BGM0174	BA/BR
67	BGM0084	BA/BR	90	BGM0121	BA/BR	113	BGM0150	BA/BR	136	BGM0175	BA/BR
68	BGM0085	SE/BR	91	BGM0122	PA/BR	114	BGM0151	BA/BR	137	BGM0177	SP/BR
69	BGM0087	SE/BR	92	BGM0123	BA/BR	115	BGM0152	BA/BR	138	BGM0178	BA/BR
70	BGM0088	BA/BR	93	BGM0124	Brasil	116	BGM0153	BA/BR	139	BGM0179	BA/BR
71	BGM0089	Brasil	94	BGM0126	BA/BR	117	BGM0154	Brasil	140	BGM0181	BA/BR
72	BGM0090	BA/BR	95	BGM0127	BA/BR	118	BGM0155	BA/BR	141	BGM0182	BA/BR
73	BGM0091	RN/BR	96	BGM0128	MG/BR	119	BGM0156	BA/BR	142	BGM0183	Brasil
74	BGM0093	Brasil	97	BGM0130	BA/BR	120	BGM0157	Brasil	143	BGM0184	BA/BR
75	BGM0094	BA/BR	98	BGM0131	PA/BR	121	BGM0158	BA/BR	144	BGM0185	BA/BR
76	BGM0096	BA/BR	99	BGM0132	PA/BR	122	BGM0160	BA/BR	145	BGM0186	BA/BR
77	BGM0097	BA/BR	100	BGM0133	BA/BR	123	BGM0161	BA/BR	146	BGM0187	BA/BR
78	BGM0098	Brasil	101	BGM0134	BA/BR	124	BGM0162	BA/BR	147	BGM0188	BA/BR
79	BGM0100	BA/BR	102	BGM0135	BA/BR	125	BGM0163	BA/BR	148	BGM0189	RN/BR

N.º	Acessos	Local	N.º	Acessos	Local	N.º	Acessos	Local	N.º	Acessos	Local
149	BGM0190	BA/BR	172	BGM0232	BA/BR	195	BGM0268	BA/BR	218	BGM0297	Colômbia
150	BGM0194	RJ/BR	173	BGM0235	SP/BR	196	BGM0269	SE/BR	219	BGM0298	Colômbia
151	BGM0196	BA/BR	174	BGM0236	SP/BR	197	BGM0270	BA/BR	220	BGM0303	Colômbia
152	BGM0199	SP/BR	175	BGM0237	BA/BR	198	BGM0271	BA/BR	221	BGM0304	Colômbia
153	BGM0201	BA/BR	176	BGM0238	Brasil	199	BGM0273	BA/BR	222	BGM0306	Colômbia
154	BGM0202	BA/BR	177	BGM0239	Brasil	200	BGM0276	SP/BR	223	BGM0307	Colômbia
155	BGM0204	BA/BR	178	BGM0240	BA/BR	201	BGM0277	SE/BR	224	BGM0308	SP/BR
156	BGM0205	BA/BR	179	BGM0241	Brasil	202	BGM0278	NR	225	BGM0310	Colômbia
157	BGM0206	BA/BR	180	BGM0242	BA/BR	203	BGM0279	BA/BR	226	BGM0312	Colômbia
158	BGM0207	BA/BR	181	BGM0245	NR	204	BGM0280	SE/BR	227	BGM0316	Colômbia
159	BGM0208	BA/BR	182	BGM0246	NR	205	BGM0281	BA/BR	228	BGM0318	Colômbia
160	BGM0209	SP/BR	183	BGM0247	Brasil	206	BGM0282	BA/BR	229	BGM0319	Colômbia
161	BGM0210	BA/BR	184	BGM0248	BA/BR	207	BGM0283	Brasil	230	BGM0323	Colômbia
162	BGM0211	SP/BR	185	BGM0249	BA/BR	208	BGM0284	BA/BR	231	BGM0324	Colômbia
163	BGM0212	BA/BR	186	BGM0250	BA/BR	209	BGM0285	Brasil	232	BGM0326	Colômbia
164	BGM0213	BA/BR	187	BGM0254	BA/BR	210	BGM0286	Brasil	233	BGM0327	Colômbia
165	BGM0214	SP/BR	188	BGM0257	BA/BR	211	BGM0287	Brasil	234	BGM0330	Colômbia
166	BGM0215	RJ/BR	189	BGM0260	SE/BR	212	BGM0288	BA/BR	235	BGM0331	Colômbia
167	BGM0216	RJ/BR	190	BGM0261	BA/BR	213	BGM0289	Colômbia	236	BGM0332	Colômbia
168	BGM0217	BA/BR	191	BGM0263	BA/BR	214	BGM0290	Colômbia	237	BGM0336	Colômbia
169	BGM0220	BA/BR	192	BGM0264	BA/BR	215	BGM0291	Colômbia	238	BGM0337	Colômbia
170	BGM0222	BA/BR	193	BGM0265	BA/BR	216	BGM0294	Colômbia	239	BGM0338	Colômbia
171	BGM0226	BA/BR	194	BGM0266	BA/BR	217	BGM0295	Colômbia	240	BGM0340	Colômbia

N.º	Acessos	Local	N.º	Acessos	Local	N.º	Acessos	Local	N.º	Acessos	Local
241	BGM0341	Colômbia	264	BGM0378	CE/BR	287	BGM0414	SP/BR	310	BGM0444	SP/BR
242	BGM0342	Colômbia	265	BGM0380	CE/BR	288	BGM0419	Brasil	311	BGM0445	Brasil
243	BGM0343	Venezuela	266	BGM0382	CE/BR	289	BGM0420	Brasil	312	BGM0447	Brasil
244	BGM0345	Colômbia	267	BGM0383	CE/BR	290	BGM0421	SP/BR	313	BGM0448	RJ/BR
245	BGM0349	Colômbia	268	BGM0386	CE/BR	291	BGM0422	SP/BR	314	BGM0449	Brasil
246	BGM0352	SP/BR	269	BGM0388	ES/BR	292	BGM0423	Brasil	315	BGM0451	NR
247	BGM0356	SP/BR	270	BGM0389	RJ/BR	293	BGM0425	Colômbia	316	BGM0452	Brasil
248	BGM0357	SP/BR	271	BGM0390	ES/BR	294	BGM0426	Brasil	317	BGM0454	RJ/BR
249	BGM0358	BA/BR	272	BGM0393	ES/BR	295	BGM0427	Brasil	318	BGM0455	ES/BR
250	BGM0359	BA/BR	273	BGM0394	RJ/BR	296	BGM0428	Brasil	319	BGM0460	Brasil
251	BGM0360	Colômbia	274	BGM0395	ES/BR	297	BGM0431	NR	320	BGM0461	RJ/BR
252	BGM0361	Brasil	275	BGM0396	ES/BR	298	BGM0432	Brasil	321	BGM0462	Brasil
253	BGM0362	Brasil	276	BGM0398	RJ/BR	299	BGM0433	Brasil	322	BGM0463	Brasil
254	BGM0364	CE/BR	277	BGM0399	ES/BR	300	BGM0434	Brasil	323	BGM0464	MG/BR
255	BGM0365	CE/BR	278	BGM0400	ES/BR	301	BGM0435	Brasil	324	BGM0465	NR
256	BGM0366	Brasil	279	BGM0405	ES/BR	302	BGM0436	RJ/BR	325	BGM0467	PA/BR
257	BGM0367	CE/BR	280	BGM0406	ES/BR	303	BGM0437	Brasil	326	BGM0468	RJ/BR
258	BGM0369	CE/BR	281	BGM0407	SP/BR	304	BGM0438	Brasil	327	BGM0469	Brasil
259	BGM0371	CE/BR	282	BGM0408	Brasil	305	BGM0439	Brasil	328	BGM0470	Brasil
260	BGM0374	Brasil	283	BGM0409	Brasil	306	BGM0440	SP/BR	329	BGM0471	Brasil
261	BGM0375	CE/BR	284	BGM0410	Colômbia	307	BGM0441	RS/BR	330	BGM0472	RJ/BR
262	BGM0376	CE/BR	285	BGM0411	Brasil	308	BGM0442	SP/BR	331	BGM0473	Brasil
263	BGM0377	Brasil	286	BGM0413	MG/BR	309	BGM0443	Brasil	332	BGM0474	Brasil

N.º	Acessos	Local	N.º	Acessos	Local	N.º	Acessos	Local	N.º	Acessos	Local
333	BGM0475	Brasil	356	BGM0509	MG/BR	379	BGM0545	AL/BR	402	BGM0576	PE/BR
334	BGM0477	SP/BR	357	BGM0510	MG/BR	380	BGM0546	AL/BR	403	BGM0579	PE/BR
335	BGM0478	Brasil	358	BGM0511	Brasil	381	BGM0547	PE/BR	404	BGM0583	AL/BR
336	BGM0479	NR	359	BGM0512	MG/BR	382	BGM0549	PE/BR	405	BGM0587	PE/BR
337	BGM0480	Brasil	360	BGM0514	Brasil	383	BGM0550	BA/BR	406	BGM0589	Brasil
338	BGM0484	Brasil	361	BGM0515	Brasil	384	BGM0551	PA/BR	407	BGM0590	PE/BR
339	BGM0488	Brasil	362	BGM0517	MG/BR	385	BGM0552	AL/BR	408	BGM0591	RS/BR
340	BGM0489	Brasil	363	BGM0520	MG/BR	386	BGM0555	Brasil	409	BGM0592	RS/BR
341	BGM0491	Brasil	364	BGM0521	RJ/BR	387	BGM0556	BA/BR	410	BGM0593	RS/BR
342	BGM0492	Brasil	365	BGM0523	MG/BR	388	BGM0557	SP/BR	411	BGM0594	RS/BR
343	BGM0494	RJ/BR	366	BGM0527	ES/BR	389	BGM0558	SE/BR	412	BGM0598	RS/BR
344	BGM0495	RJ/BR	367	BGM0529	Brasil	390	BGM0560	PE/BR	413	BGM0600	RS/BR
345	BGM0496	ES/BR	368	BGM0532	Venezuela	391	BGM0561	PE/BR	414	BGM0601	Colômbia
346	BGM0497	BA/BR	369	BGM0533	NR	392	BGM0562	BA/BR	415	BGM0603	Colômbia
347	BGM0498	Brasil	370	BGM0536	BA/BR	393	BGM0563	BA/BR	416	BGM0606	CE/BR
348	BGM0499	Brasil	371	BGM0537	CE/BR	394	BGM0564	CE/BR	417	BGM0607	Brasil
349	BGM0500	MG/BR	372	BGM0538	CE/BR	395	BGM0565	BA/BR	418	BGM0608	AC/BR
350	BGM0501	MG/BR	373	BGM0539	PE/BR	396	BGM0567	PA/BR	419	BGM0609	CE/BR
351	BGM0503	MG/BR	374	BGM0540	AL/BR	397	BGM0569	BA/BR	420	BGM0610	CE/BR
352	BGM0504	Brasil	375	BGM0541	BA/BR	398	BGM0570	PE/BR	421	BGM0611	CE/BR
353	BGM0505	MG/BR	376	BGM0542	PB/BR	399	BGM0573	PR/BR	422	BGM0613	CE/BR
354	BGM0507	MT/BR	377	BGM0543	Brasil	400	BGM0574	PE/BR	423	BGM0614	SP/BR
355	BGM0508	RJ/BR	378	BGM0544	PE/BR	401	BGM0575	Brasil	424	BGM0615	CE/BR

N.º	Acessos	Local	N.º	Acessos	Local	N.º	Acessos	Local	N.º	Acessos	Local
425	BGM0618	CE/BR	448	BGM0650	CE/BR	471	BGM0678	MA/BR	494	BGM0729	BA/BR
426	BGM0619	CE/BR	449	BGM0651	Brasil	472	BGM0679	MA/BR	495	BGM0733	ES/BR
427	BGM0620	CE/BR	450	BGM0654	Brasil	473	BGM0680	MA/BR	496	BGM0737	ES/BR
428	BGM0623	CE/BR	451	BGM0655	CE/BR	474	BGM0682	ES/BR	497	BGM0741	ES/BR
429	BGM0624	CE/BR	452	BGM0656	CE/BR	475	BGM0685	MA/BR	498	BGM0745	Brasil
430	BGM0625	CE/BR	453	BGM0657	MT/BR	476	BGM0693	MA/BR	499	BGM0752	ES/BR
431	BGM0626	SP/BR	454	BGM0658	Colômbia	477	BGM0694	MA/BR	500	BGM0756	ES/BR
432	BGM0629	CE/BR	455	BGM0659	MA/BR	478	BGM0695	MA/BR	501	BGM0759	NR
433	BGM0630	CE/BR	456	BGM0660	MA/BR	479	BGM0697	MA/BR	502	BGM0760	ES/BR
434	BGM0631	Brasil	457	BGM0661	RS/BR	480	BGM0700	MA/BR	503	BGM0767	BA/BR
435	BGM0634	SP/BR	458	BGM0662	MA/BR	481	BGM0702	AC/BR	504	BGM0776	BA/BR
436	BGM0635	CE/BR	459	BGM0664	MA/BR	482	BGM0703	AC/BR	505	BGM0777	BA/BR
437	BGM0636	CE/BR	460	BGM0665	MA/BR	483	BGM0706	NR	506	BGM0778	BA/BR
438	BGM0638	CE/BR	461	BGM0666	Colômbia	484	BGM0707	BA/BR	507	BGM0779	BA/BR
439	BGM0639	SP/BR	462	BGM0667	RS/BR	485	BGM0708	AC/BR	508	BGM0780	BA/BR
440	BGM0640	CE/BR	463	BGM0668	MG/BR	486	BGM0711	AC/BR	509	BGM0781	BA/BR
441	BGM0641	CE/BR	464	BGM0669	MA/BR	487	BGM0713	AC/BR	510	BGM0783	BA/BR
442	BGM0642	CE/BR	465	BGM0670	RJ/BR	488	BGM0714	BA/BR	511	BGM0785	BA/BR
443	BGM0644	BA/BR	466	BGM0671	MA/BR	489	BGM0715	AC/BR	512	BGM0788	BA/BR
444	BGM0645	CE/BR	467	BGM0672	MA/BR	490	BGM0717	AC/BR	513	BGM0790	BA/BR
445	BGM0646	CE/BR	468	BGM0673	MA/BR	491	BGM0718	AC/BR	514	BGM0791	BA/BR
446	BGM0648	CE/BR	469	BGM0675	MA/BR	492	BGM0726	BA/BR	515	BGM0793	BA/BR
447	BGM0649	CE/BR	470	BGM0677	MA/BR	493	BGM0728	BA/BR	516	BGM0799	BA/BR

N.º	Acessos	Local	N.º	Acessos	Local	N.º	Acessos	Local	N.º	Acessos	Local
517	BGM0800	BA/BR	540	BGM0830	SE/BR	563	BGM0867	BA/BR	586	BGM0895	PA/BR
518	BGM0803	AL/BR	541	BGM0831	SE/BR	564	BGM0868	BA/BR	587	BGM0896	PA/BR
519	BGM0805	AL/BR	542	BGM0832	SE/BR	565	BGM0869	BA/BR	588	BGM0898	PA/BR
520	BGM0806	AL/BR	543	BGM0834	SE/BR	566	BGM0870	Colômbia	589	BGM0900	Colômbia
521	BGM0807	AL/BR	544	BGM0837	SE/BR	567	BGM0872	AP/BR	590	BGM0901	CE/BR
522	BGM0808	AL/BR	545	BGM0838	SE/BR	568	BGM0873	Colômbia	591	BGM0902	PA/BR
523	BGM0809	AL/BR	546	BGM0841	SE/BR	569	BGM0875	MA/BR	592	BGM0903	PA/BR
524	BGM0810	AL/BR	547	BGM0842	SE/BR	570	BGM0876	PA/BR	593	BGM0904	Colômbia
525	BGM0812	AL/BR	548	BGM0843	SE/BR	571	BGM0877	Colômbia	594	BGM0905	PE/BR
526	BGM0813	AL/BR	549	BGM0845	SE/BR	572	BGM0878	AM/BR	595	BGM0906	Colômbia
527	BGM0814	AL/BR	550	BGM0846	SE/BR	573	BGM0879	SC/BR	596	BGM0907	AM/BR
528	BGM0815	AL/BR	551	BGM0847	SE/BR	574	BGM0880	AP/BR	597	BGM0908	Colômbia
529	BGM0816	AL/BR	552	BGM0848	SE/BR	575	BGM0882	Colômbia	598	BGM0909	PA/BR
530	BGM0817	AL/BR	553	BGM0849	SE/BR	576	BGM0884	Colômbia	599	BGM0912	Brasil
531	BGM0818	SE/BR	554	BGM0850	SE/BR	577	BGM0885	Colômbia	600	BGM0913	AC/BR
532	BGM0819	SE/BR	555	BGM0851	SE/BR	578	BGM0886	AM/BR	601	BGM0914	PA/BR
533	BGM0820	SE/BR	556	BGM0854	BA/BR	579	BGM0887	Colômbia	602	BGM0915	PB/BR
534	BGM0821	SE/BR	557	BGM0856	SE/BR	580	BGM0888	SP/BR	603	BGM0917	PA/BR
535	BGM0822	SE/BR	558	BGM0857	SE/BR	581	BGM0889	TO/BR	604	BGM0918	PA/BR
536	BGM0823	SE/BR	559	BGM0858	PB/BR	582	BGM0890	Colômbia	605	BGM0919	AM/BR
537	BGM0824	SE/BR	560	BGM0859	PB/BR	583	BGM0892	MG/BR	606	BGM0920	AM/BR
538	BGM0826	SE/BR	561	BGM0863	MG/BR	584	BGM0893	AM/BR	607	BGM0922	BA/BR
539	BGM0829	SE/BR	562	BGM0866	BA/BR	585	BGM0894	Colômbia	608	BGM0923	BA/BR

N.º	Acessos	Local	N.º	Acessos	Local	N.º	Acessos	Local	N.º	Acessos	Local
609	BGM0924	BA/BR	632	BGM0952	AM/BR	655	BGM0978	AM/BR	678	BGM1026	BA/BR
610	BGM0925	Brasil	633	BGM0953	AM/BR	656	BGM0979	AM/BR	679	BGM1027	BA/BR
611	BGM0927	Brasil	634	BGM0954	AM/BR	657	BGM0980	AM/BR	680	BGM1028	BA/BR
612	BGM0928	Brasil	635	BGM0955	AM/BR	658	BGM0981	AM/BR	681	BGM1029	BA/BR
613	BGM0929	Brasil	636	BGM0956	AM/BR	659	BGM0982	AM/BR	682	BGM1030	NR
614	BGM0930	PR/BR	637	BGM0957	PA/BR	660	BGM0983	AM/BR	683	BGM1031	BA/BR
615	BGM0931	SP/BR	638	BGM0958	AM/BR	661	BGM0984	AM/BR	684	BGM1034	TO/BR
616	BGM0932	AL/BR	639	BGM0959	AM/BR	662	BGM0985	AM/BR	685	BGM1037	TO/BR
617	BGM0934	BA/BR	640	BGM0960	AM/BR	663	BGM0986	AM/BR	686	BGM1040	PI/BR
618	BGM0935	BA/BR	641	BGM0961	AM/BR	664	BGM0987	AM/BR	687	BGM1041	PI/BR
619	BGM0936	BA/BR	642	BGM0962	AM/BR	665	BGM0989	AM/BR	688	BGM1042	CE/BR
620	BGM0937	BA/BR	643	BGM0963	AM/BR	666	BGM0992	AM/BR	689	BGM1043	PI/BR
621	BGM0940	PA/BR	644	BGM0965	AM/BR	667	BGM0993	AM/BR	690	BGM1044	CE/BR
622	BGM0941	AM/BR	645	BGM0966	AM/BR	668	BGM0994	AM/BR	691	BGM1050	RN/BR
623	BGM0942	AM/BR	646	BGM0967	AM/BR	669	BGM0995	Colômbia	692	BGM1053	RN/BR
624	BGM0943	AM/BR	647	BGM0968	AM/BR	670	BGM0996	Colômbia	693	BGM1057	RN/BR
625	BGM0944	AM/BR	648	BGM0971	AM/BR	671	BGM0998	Colômbia	694	BGM1060	RN/BR
626	BGM0945	AM/BR	649	BGM0972	AM/BR	672	BGM1010	Brasil	695	BGM1061	RN/BR
627	BGM0946	AM/BR	650	BGM0973	AM/BR	673	BGM1012	SC/BR	696	BGM1062	RN/BR
628	BGM0947	AM/BR	651	BGM0974	AM/BR	674	BGM1015	SC/BR	697	BGM1065	PB/BR
629	BGM0948	AM/BR	652	BGM0975	AM/BR	675	BGM1023	BA/BR	698	BGM1067	RN/BR
630	BGM0949	AM/BR	653	BGM0976	AM/BR	676	BGM1024	BA/BR	699	BGM1073	RN/BR
631	BGM0951	AM/BR	654	BGM0977	AM/BR	677	BGM1025	BA/BR	700	BGM1077	PB/BR

N.º	Acessos	Local	N.º	Acessos	Local	N.º	Acessos	Local	N.º	Acessos	Local
701	BGM1078	PB/BR	724	BGM1115	NR	747	BGM1141	AM/BR	770	BGM1177	Brasil
702	BGM1079	PB/BR	725	BGM1116	BA/BR	748	BGM1142	AM/BR	771	BGM1178	Brasil
703	BGM1080	BA/BR	726	BGM1118	BA/BR	749	BGM1143	MT/BR	772	BGM1179	PB/BR
704	BGM1081	PE/BR	727	BGM1119	TO/BR	750	BGM1144	AM/BR	773	BGM1180	Brasil
705	BGM1082	PB/BR	728	BGM1120	RN/BR	751	BGM1146	AM/BR	774	BGM1182	PA/BR
706	BGM1083	PE/BR	729	BGM1121	RN/BR	752	BGM1148	BA/BR	775	BGM1183	AC/BR
707	BGM1085	BA/BR	730	BGM1122	PB/BR	753	BGM1150	BA/BR	776	BGM1184	Brasil
708	BGM1087	BA/BR	731	BGM1123	BA/BR	754	BGM1152	AM/BR	777	BGM1185	AM/BR
709	BGM1088	BA/BR	732	BGM1124	BA/BR	755	BGM1155	Brasil	778	BGM1186	PA/BR
710	BGM1091	RN/BR	733	BGM1125	RO/BR	756	BGM1156	NR	779	BGM1188	Brasil
711	BGM1093	MT/BR	734	BGM1126	BA/BR	757	BGM1158	Brasil	780	BGM1189	PA/BR
712	BGM1094	MT/BR	735	BGM1127	BA/BR	758	BGM1159	Brasil	781	BGM1190	PA/BR
713	BGM1099	MT/BR	736	BGM1128	BA/BR	759	BGM1160	PA/BR	782	BGM1191	PA/BR
714	BGM1100	MT/BR	737	BGM1130	RN/BR	760	BGM1161	PA/BR	783	BGM1193	BA/BR
715	BGM1101	MT/BR	738	BGM1131	SP/BR	761	BGM1162	Brasil	784	BGM1194	Brasil
716	BGM1102	MT/BR	739	BGM1132	AM/BR	762	BGM1163	Brasil	785	BGM1195	Brasil
717	BGM1103	Brasil	740	BGM1133	AM/BR	763	BGM1164	Brasil	786	BGM1196	PA/BR
718	BGM1105	BA/BR	741	BGM1134	AM/BR	764	BGM1165	PA/BR	787	BGM1197	PA/BR
719	BGM1106	BA/BR	742	BGM1135	AM/BR	765	BGM1167	Brasil	788	BGM1198	AP/BR
720	BGM1107	BA/BR	743	BGM1136	AM/BR	766	BGM1168	Brasil	789	BGM1200	BA/BR
721	BGM1108	SC/BR	744	BGM1137	AM/BR	767	BGM1171	PA/BR	790	BGM1202	BA/BR
722	BGM1110	SC/BR	745	BGM1139	AM/BR	768	BGM1174	Brasil	791	BGM1203	BA/BR
723	BGM1111	SC/BR	746	BGM1140	AM/BR	769	BGM1175	Brasil	792	BGM1206	BA/BR

N.º	Acessos	Local	N.º	Acessos	Local	N.º	Acessos	Local	N.º	Acessos	Local
793	BGM1207	BA/BR	816	BGM1254	Nigéria	839	BGM1286	PE/BR	862	BGM1318	PE/BR
794	BGM1208	NR	817	BGM1255	Nigéria	840	BGM1287	PE/BR	863	BGM1319	PE/BR
795	BGM1209	PA/BR	818	BGM1257	Nigéria	841	BGM1288	PE/BR	864	BGM1321	PE/BR
796	BGM1210	PA/BR	819	BGM1259	Nigéria	842	BGM1291	PE/BR	865	BGM1323	PE/BR
797	BGM1211	AM/BR	820	BGM1261	PE/BR	843	BGM1292	PE/BR	866	BGM1324	PE/BR
798	BGM1212	Brasil	821	BGM1262	PE/BR	844	BGM1293	PE/BR	867	BGM1325	PE/BR
799	BGM1214	Brasil	822	BGM1263	PE/BR	845	BGM1294	PE/BR	868	BGM1327	PB/BR
800	BGM1217	Brasil	823	BGM1265	PE/BR	846	BGM1295	PE/BR	869	BGM1328	PB/BR
801	BGM1218	Brasil	824	BGM1267	PE/BR	847	BGM1296	PE/BR	870	BGM1330	PB/BR
802	BGM1219	Brasil	825	BGM1268	PE/BR	848	BGM1297	PE/BR	871	BGM1332	PB/BR
803	BGM1220	Brasil	826	BGM1269	PE/BR	849	BGM1298	PE/BR	872	BGM1333	PB/BR
804	BGM1222	Brasil	827	BGM1270	PE/BR	850	BGM1300	PE/BR	873	BGM1335	PE/BR
805	BGM1223	Brasil	828	BGM1273	PE/BR	851	BGM1303	PE/BR	874	BGM1338	PE/BR
806	BGM1224	Brasil	829	BGM1274	PE/BR	852	BGM1305	PE/BR	875	BGM1339	PE/BR
807	BGM1227	Brasil	830	BGM1275	PE/BR	853	BGM1306	PE/BR	876	BGM1342	PE/BR
808	BGM1236	Colômbia	831	BGM1277	PE/BR	854	BGM1308	CE/BR	877	BGM1344	PB/BR
809	BGM1243	Colômbia	832	BGM1279	PE/BR	855	BGM1309	CE/BR	878	BGM1345	PB/BR
810	BGM1245	Nigéria	833	BGM1280	PE/BR	856	BGM1310	CE/BR	879	BGM1347	PB/BR
811	BGM1248	Nigéria	834	BGM1281	PE/BR	857	BGM1311	PE/BR	880	BGM1348	PB/BR
812	BGM1249	Nigéria	835	BGM1282	PE/BR	858	BGM1313	PE/BR	881	BGM1350	PB/BR
813	BGM1251	Nigéria	836	BGM1283	PE/BR	859	BGM1314	PE/BR	882	BGM1352	PB/BR
814	BGM1252	Nigéria	837	BGM1284	PE/BR	860	BGM1316	PE/BR	883	BGM1353	PB/BR
815	BGM1253	Nigéria	838	BGM1285	PE/BR	861	BGM1317	PE/BR	884	BGM1354	PB/BR

N.º	Acessos	Local									
885	BGM1355	PB/BR	908	BGM1382	PB/BR	931	BGM1412	RN/BR	954	BGM1448	Brasil
886	BGM1356	PB/BR	909	BGM1383	PB/BR	932	BGM1413	RN/BR	955	BGM1450	PR/BR
887	BGM1357	PB/BR	910	BGM1386	RN/BR	933	BGM1414	RN/BR	956	BGM1451	PR/BR
888	BGM1358	PB/BR	911	BGM1387	RN/BR	934	BGM1415	RN/BR	957	BGM1452	PR/BR
889	BGM1360	PB/BR	912	BGM1388	RN/BR	935	BGM1416	RN/BR	958	BGM1453	PR/BR
890	BGM1361	PB/BR	913	BGM1389	RN/BR	936	BGM1417	RN/BR	959	BGM1454	PR/BR
891	BGM1362	PB/BR	914	BGM1390	RN/BR	937	BGM1419	RN/BR	960	BGM1455	PR/BR
892	BGM1363	PB/BR	915	BGM1392	RN/BR	938	BGM1420	RN/BR	961	BGM1456	MT/BR
893	BGM1364	PB/BR	916	BGM1393	RN/BR	939	BGM1422	RN/BR	962	BGM1457	BA/BR
894	BGM1365	PB/BR	917	BGM1395	RN/BR	940	BGM1423	PE/BR	963	BGM1458	AP/BR
895	BGM1366	PB/BR	918	BGM1396	RN/BR	941	BGM1428	PE/BR	964	BGM1465	BA/BR
896	BGM1367	PB/BR	919	BGM1397	RN/BR	942	BGM1429	PE/BR	965	BGM1466	Brasil
897	BGM1368	PB/BR	920	BGM1398	RN/BR	943	BGM1432	PE/BR	966	BGM1468	Brasil
898	BGM1369	PB/BR	921	BGM1399	RN/BR	944	BGM1434	PE/BR	967	BGM1470	BA/BR
899	BGM1370	PB/BR	922	BGM1400	RN/BR	945	BGM1436	PE/BR	968	BGM1471	BA/BR
900	BGM1371	PB/BR	923	BGM1401	RN/BR	946	BGM1437	PE/BR	969	BGM1472	BA/BR
901	BGM1373	PB/BR	924	BGM1402	RN/BR	947	BGM1439	BA/BR	970	BGM1473	BA/BR
902	BGM1374	PB/BR	925	BGM1403	RN/BR	948	BGM1440	BA/BR	971	BGM1474	BA/BR
903	BGM1375	PB/BR	926	BGM1406	RN/BR	949	BGM1441	BA/BR	972	BGM1475	BA/BR
904	BGM1376	PB/BR	927	BGM1407	RN/BR	950	BGM1442	BA/BR	973	BGM1476	BA/BR
905	BGM1377	PB/BR	928	BGM1408	RN/BR	951	BGM1444	PA/BR	974	BGM1477	BA/BR
906	BGM1378	PB/BR	929	BGM1409	RN/BR	952	BGM1446	BA/BR	975	BGM1479	BA/BR
907	BGM1381	PB/BR	930	BGM1410	RN/BR	953	BGM1447	BA/BR	976	BGM1480	BA/BR

N.º	Acessos	Local	N.º	Acessos	Local	N.º	Acessos	Local	N.º	Acessos	Local
977	BGM1481	BA/BR	1000	BGM1510	BA/BR	1023	BGM1541	NR	1046	BGM1583	PI/BR
978	BGM1482	BA/BR	1001	BGM1511	BA/BR	1024	BGM1543	BA/BR	1047	BGM1584	PI/BR
979	BGM1483	BA/BR	1002	BGM1512	BA/BR	1025	BGM1545	BA/BR	1048	BGM1585	PI/BR
980	BGM1484	BA/BR	1003	BGM1513	BA/BR	1026	BGM1546	BA/BR	1049	BGM1589	PI/BR
981	BGM1485	BA/BR	1004	BGM1515	BA/BR	1027	BGM1547	BA/BR	1050	BGM1590	PI/BR
982	BGM1486	BA/BR	1005	BGM1516	BA/BR	1028	BGM1549	NR	1051	BGM1593	PI/BR
983	BGM1487	BA/BR	1006	BGM1517	BA/BR	1029	BGM1550	BA/BR	1052	BGM1594	PI/BR
984	BGM1488	BA/BR	1007	BGM1518	BA/BR	1030	BGM1551	NR	1053	BGM1595	PI/BR
985	BGM1489	BA/BR	1008	BGM1519	BA/BR	1031	BGM1552	BA/BR	1054	BGM1596	PI/BR
986	BGM1490	BA/BR	1009	BGM1520	BA/BR	1032	BGM1559	BA/BR	1055	BGM1597	PI/BR
987	BGM1491	BA/BR	1010	BGM1521	BA/BR	1033	BGM1560	BA/BR	1056	BGM1598	PI/BR
988	BGM1492	BA/BR	1011	BGM1523	BA/BR	1034	BGM1561	BA/BR	1057	BGM1599	PI/BR
989	BGM1494	BA/BR	1012	BGM1524	BA/BR	1035	BGM1562	BA/BR	1058	BGM1601	PI/BR
990	BGM1495	BA/BR	1013	BGM1525	BA/BR	1036	BGM1563	PI/BR	1059	BGM1602	PI/BR
991	BGM1496	BA/BR	1014	BGM1526	BA/BR	1037	BGM1566	PI/BR	1060	BGM1603	PI/BR
992	BGM1497	BA/BR	1015	BGM1527	BA/BR	1038	BGM1567	PI/BR	1061	BGM1604	PI/BR
993	BGM1498	BA/BR	1016	BGM1532	BA/BR	1039	BGM1569	PI/BR	1062	BGM1605	PI/BR
994	BGM1499	BA/BR	1017	BGM1533	BA/BR	1040	BGM1572	NR	1063	BGM1606	PI/BR
995	BGM1501	BA/BR	1018	BGM1534	BA/BR	1041	BGM1573	PI/BR	1064	BGM1607	PI/BR
996	BGM1502	BA/BR	1019	BGM1535	BA/BR	1042	BGM1575	NR	1065	BGM1608	PI/BR
997	BGM1503	BA/BR	1020	BGM1537	BA/BR	1043	BGM1576	PI/BR	1066	BGM1609	PI/BR
998	BGM1507	BA/BR	1021	BGM1539	BA/BR	1044	BGM1579	PI/BR	1067	BGM1610	PI/BR
999	BGM1508	BA/BR	1022	BGM1540	BA/BR	1045	BGM1581	PI/BR	1068	BGM1611	PI/BR

N.º	Acessos	Local									
1069	BGM1613	PI/BR	1092	BGM1638	PA/BR	1115	BGM1672	PA/BR	1138	BGM1700	AM/BR
1070	BGM1614	PI/BR	1093	BGM1639	AL/BR	1116	BGM1674	PA/BR	1139	BGM1701	AM/BR
1071	BGM1615	PI/BR	1094	BGM1640	BA/BR	1117	BGM1675	PA/BR	1140	BGM1702	AM/BR
1072	BGM1616	BA/BR	1095	BGM1643	PA/BR	1118	BGM1677	PA/BR	1141	BGM1703	AM/BR
1073	BGM1617	NR	1096	BGM1645	BA/BR	1119	BGM1678	PA/BR	1142	BGM1704	AM/BR
1074	BGM1618	NR	1097	BGM1646	SE/BR	1120	BGM1679	PA/BR	1143	BGM1705	AM/BR
1075	BGM1619	NR	1098	BGM1648	BA/BR	1121	BGM1680	PA/BR	1144	BGM1706	AM/BR
1076	BGM1620	PB/BR	1099	BGM1649	BA/BR	1122	BGM1681	BA/BR	1145	BGM1707	AM/BR
1077	BGM1621	PB/BR	1100	BGM1650	BA/BR	1123	BGM1682	BA/BR	1146	BGM1708	AM/BR
1078	BGM1622	PB/BR	1101	BGM1655	NR	1124	BGM1683	BA/BR	1147	BGM1709	AM/BR
1079	BGM1623	PB/BR	1102	BGM1656	BA/BR	1125	BGM1684	BA/BR	1148	BGM1710	AM/BR
1080	BGM1624	PB/BR	1103	BGM1657	BA/BR	1126	BGM1685	BA/BR	1149	BGM1711	AM/BR
1081	BGM1626	PB/BR	1104	BGM1658	BA/BR	1127	BGM1688	BA/BR	1150	BGM1712	AM/BR
1082	BGM1627	PE/BR	1105	BGM1659	BA/BR	1128	BGM1689	BA/BR	1151	BGM1713	AM/BR
1083	BGM1628	PE/BR	1106	BGM1660	BA/BR	1129	BGM1690	PE/BR	1152	BGM1714	AM/BR
1084	BGM1629	CE/BR	1107	BGM1661	SP/BR	1130	BGM1691	BA/BR	1153	BGM1715	AM/BR
1085	BGM1630	NR	1108	BGM1662	SP/BR	1131	BGM1692	BA/BR	1154	BGM1716	AM/BR
1086	BGM1631	BA/BR	1109	BGM1666	PA/BR	1132	BGM1693	BA/BR	1155	BGM1718	AM/BR
1087	BGM1633	CE/BR	1110	BGM1667	PA/BR	1133	BGM1694	BA/BR	1156	BGM1721	MA/BR
1088	BGM1634	CE/BR	1111	BGM1668	PA/BR	1134	BGM1696	PE/BR	1157	BGM1722	MA/BR
1089	BGM1635	CE/BR	1112	BGM1669	PA/BR	1135	BGM1697	SP/BR	1158	BGM1723	BA/BR
1090	BGM1636	CE/BR	1113	BGM1670	PA/BR	1136	BGM1698	MS/BR	1159	BGM1724	BA/BR
1091	BGM1637	PA/BR	1114	BGM1671	PA/BR	1137	BGM1699	MS/BR	1160	BGM1725	BA/BR

N.º	Acessos	Local	N.º	Acessos	Local	N.º	Acessos	Local	N.º	Acessos	Local
1161	BGM1727	BA/BR	1184	BGM1751	MA/BR	1207	BGM1779	MA/BR	1230	BGM1850	PA/BR
1162	BGM1728	BA/BR	1185	BGM1752	MA/BR	1208	BGM1780	MA/BR	1231	BGM1858	PA/BR
1163	BGM1729	MA/BR	1186	BGM1753	MA/BR	1209	BGM1782	MA/BR	1232	BGM1866	PR/BR
1164	BGM1731	MA/BR	1187	BGM1754	MA/BR	1210	BGM1783	MA/BR	1233	BGM1867	PR/BR
1165	BGM1732	MA/BR	1188	BGM1755	MA/BR	1211	BGM1784	MA/BR	1234	BGM1876	TO/BR
1166	BGM1733	MA/BR	1189	BGM1756	MA/BR	1212	BGM1794	MA/BR	1235	BGM1878	MA/BR
1167	BGM1734	MA/BR	1190	BGM1757	MA/BR	1213	BGM1810	BA/BR	1236	BGM1880	MA/BR
1168	BGM1735	MA/BR	1191	BGM1759	MA/BR	1214	BGM1814	BA/BR	1237	BGM1881	MA/BR
1169	BGM1736	MA/BR	1192	BGM1760	MA/BR	1215	BGM1816	RR/BR	1238	BGM1884	AM/BR
1170	BGM1737	MA/BR	1193	BGM1761	MA/BR	1216	BGM1817	NR	1239	BGM1942	PA/BR
1171	BGM1738	MA/BR	1194	BGM1763	MA/BR	1217	BGM1818	BA/BR	1240	BGM1957	AM/BR
1172	BGM1739	MA/BR	1195	BGM1764	MA/BR	1218	BGM1819	MA/BR	1241	BGM1962	AM/BR
1173	BGM1740	MA/BR	1196	BGM1765	MA/BR	1219	BGM1821	BA/PE/BR	1242	BGM1969	NR
1174	BGM1741	MA/BR	1197	BGM1766	MA/BR	1220	BGM1824	PA/BR	1243	BGM1980	AM/BR
1175	BGM1742	MA/BR	1198	BGM1767	MA/BR	1221	BGM1828	PA/BR	1244	BGM1981	AM/BR
1176	BGM1743	MA/BR	1199	BGM1768	MA/BR	1222	BGM1830	PA/BR	1245	BGM1985	AM/BR
1177	BGM1744	MA/BR	1200	BGM1769	MA/BR	1223	BGM1832	PA/BR	1246	BGM1999	AM/BR
1178	BGM1745	MA/BR	1201	BGM1770	MA/BR	1224	BGM1834	PA/BR	1247	BGM2017	BA/BR
1179	BGM1746	MA/BR	1202	BGM1771	MA/BR	1225	BGM1835	PA/BR	1248	BGM2018	BA/BR
1180	BGM1747	MA/BR	1203	BGM1772	MA/BR	1226	BGM1837	PA/BR	1249	BGM2019	PR/BR
1181	BGM1748	MA/BR	1204	BGM1773	MA/BR	1227	BGM1840	PA/BR	1250	BGM2022	PR/BR
1182	BGM1749	MA/BR	1205	BGM1776	NR	1228	BGM1842	PA/BR	1251	BGM2025	NR
1183	BGM1750	MA/BR	1206	BGM1777	MA/BR	1229	BGM1847	PA/BR	1252	BGM2028	NR

N.º	Acessos	Local	N.º	Acessos	Local	N.º	Acessos	Local	N.º	Acessos	Local
1253	BGM2029	NR	1259	BRS Guaira	Brasil	1265	Ecu 72	Brasil	1271	9607-07	Brasil
1254	BGM2030	NR	1260	BRS Kiriris	Brasil	1266	Irará	Brasil	1272	9624-09	Brasil
1255	BGM2032	NR	1261	BRS Mani branca	Brasil	1267	Lagoa	Brasil	1273	9655-02	Brasil
1256	BGM2034	NR	1262	BRS Mullatinha	Brasil	1268	Sergipe	Brasil	1274	98150-06	Brasil
1257	Brasil	Brasil	1263	BRS Verdinha	Brasil	1269	Baianinha	Brasil			
1258	BRS Formosa	Brasil	1264	Cidade Rica	Brasil	1270	9602-02	Brasil			

Fonte: Dados de Passaporte do Banco de Germoplasma Mandioca (Embrapa Mandioca e Fruticultura, Cruz das Almas, Brasil).

Legenda: NR - Indivíduos Não Referenciados; BR - Brasil; Siglas refentes aos estados brasileiros: AC - Acre; AL - Alagoas; AM - Amazonas; BA - Bahia; CE - Ceará; ES - Espírito Santo; MA - Maranhão; MG - Minas Gerais; MT - Mato Grosso; PA - Pará; PE - Pernambuco; PI - Piauí; PR - Paraná; RJ - Rio de Janeiro; RN - Rio Grande do Norte; RO - Roráima; RR - Rondônia; RS - Rio Grande so Sul; SC - Santa Catarina; SE - Sergipe; SP - São Paulo; TO - Tocantins.

CONSIDERAÇÕES FINAIS

O desenvolvimento de marcadores gene-alvo pela técnica TRAP baseados em sequências expressas (Capítulo 1) e a identificação via seleção assistida de genótipos com alelos relacionados à resistência ao mosaico africano (Capítulo 2) representam avanços na caracterização molecular e no pré-melhoramento da cultura. A mandioca é um importante recurso genético brasileiro, que demanda uma melhor caracterização para identificação de alelos de interesse para uso no melhoramento da cultura e para fins de sua conservação. Neste sentido, a caracterização molecular otimiza as atividades de melhoramento, sobretudo quando se utilizam marcadores funcionais ou com polimorfismo baseado em regiões gênicas e ainda permite a identificação de duplicatas e a caracterização da variabilidade em bancos de germoplasma.

A praticidade no desenvolvimento dos iniciadores, os níveis de polimorfismo observados, associados à especificidade da região amplificada, tornam a técnica TRAP uma poderosa ferramenta para análises moleculares em mandioca. Ademais, o polimorfismo dos marcadores TRAP foi bastante elevado com fácil implementação e com baixo custo em comparação a outros tipos de marcadores. As 69 melhores combinações TRAP permitiram a identificação de 606 alelos com variação de 3 a 18, com média de 8,8 alelos por combinação. Os iniciadores mais polimórficos (>70% de fragmentos polimórficos, PIC >0,25 e Rp >3,21) estão relacionados à biossíntese de amido, carotenoides, compostos cianogênicos, deterioração fisiológica pós-colheita, formação de raízes tuberosas e respostas de defesa. Porém, pesquisas complementares devem ser conduzidas com o objetivo de associar as rotas metabólicas analisadas ao fenótipo e validar marcas funcionais.

Em relação à resistência ao vírus do mosaico africano (CMD) a seleção assistida por marcadores (SAM) permitiu a seleção de sete acessos contendo o gene *CMD2*. Contudo, considerando que genótipos que exibem marcas ligadas ao *CMD2* apresentam uma variação no nível de resistência (de moderada a alta), os trabalhos de validação das fontes de resistência em regiões com alta incidência possibilitarão a confirmação da natureza da resistência nos genótipos selecionados. Evidentemente o desenvolvimento de novas variedades de mandioca não deve ser realizado apenas objetivando a

introdução do gene que confere resistência ao CMD sendo, portanto necessária a introgressão de demais genes relacionados a características de interesse agronômico. Assim a seleção preventiva de genótipos via SAM implementada neste trabalho deve reduz gerações na transferência de alelos sendo a forma mais eficaz para o desenvolvimento de novas variedades com características desejáveis para a indústria e para o consumo *in natura* adicionada a resistência ao mosaico africano. Desta forma, o cruzamento entre as fontes de resistência encontradas neste trabalho e variedades elites de mandioca brasileiras, permitirá sua utilização em países afetados pelo mosaico africano, abrindo novas oportunidades comerciais para as variedades lançadas pela Embrapa Mandioca e Fruticultura. Ademais, a presença do inseto vetor na Brasil justifica a seleção preventiva de genótipos resistentes, caso as proibições quarentenárias não impeçam a chegada da virose ao país.

Apesar de preferíveis para as atividades de melhoramento genético, marcadores gene-alvo e funcionais têm seu uso e desenvolvimento limitado na cultura da mandioca. Os resultados obtidos, portanto, disponibilizam uma nova ferramenta molecular associada a genes candidatos relacionado a rotas metabólicas importantes, bem como proporciona avanços na utilização da seleção assistida na cultura uma vez que permite a identificação e seleção de genótipos potencialmente resistentes ao mosaico africano.