UNIVERSIDADE FEDERAL DO RECÔNCAVO DA BAHIA

Centro de Ciências Agrárias, Ambientais e Biológicas NEAS - Núcleo de Engenharia de Água e Solo

Campus Universitário de Cruz das Almas, Bahia

Programa de Pós-Graduação em Ciências Agrárias Mestrado e Doutorado

Área de Concentração

Agricultura Irrigada e Sustentabilidade de Projetos Hidroagrícolas

Aureo S. de Oliveira

Prof. Adjunto IV

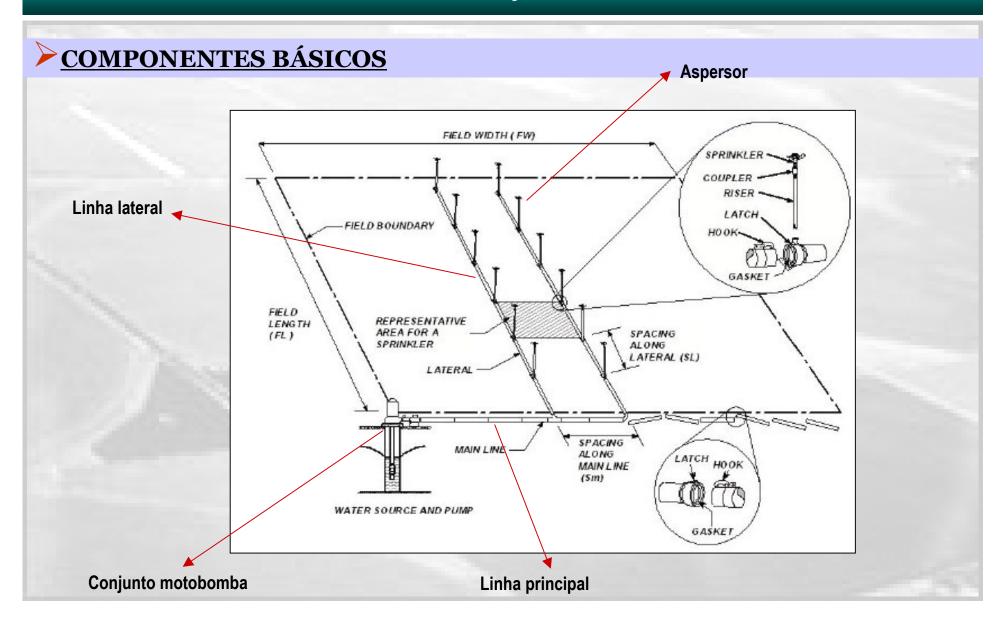
BSc, Universidade Federal da Bahia, 1988 MSc, Universidade Federal do Ceará, 1991 PhD, Universidade do Arizona, 1998

Métodos de Irrigação

IRRIGAÇÃO POR ASPERSÃO: caracteriza-se por imitar a chuva ao espalhar (aspergir) a água sobre o campo cultivado. A água é pressurizada com um conjunto motobomba, conduzida por uma rede de tubos, e aplicada por meio de emissores denominados aspersores. Os sistemas de irrigação por aspersão são classificados em função da distribuição da tubulação (*lay-out*) e da maneira como é movimentada.

Métodos de Irrigação

IRRIGAÇÃO LOCALIZADA: utiliza tubulação de pequeno diâmetro para distribuir água a plantas individuais ou grupos de plantas. Os sistemas de irrigação localizada são caracterizados quanto à localização e tipo de emissor em gotejamento e microaspersão. Estes sistemas usam emissores regularmente espaçados sobre ou dentro da tubulação para gotejar ou pulverizar a água sobre ou dentro do solo.



Métodos de Irrigação

IRRIGAÇÃO POR SUPERFÍCIE: caracteriza-se por depender da gravidade para espalhar/distribuir a água sobre a superfície do solo. Também denominada de irrigação por gravidade ou inundação. A configuração da superfície do solo e como a água é direcionada sobre a superfície do solo definem os sistemas de superfície (sulcos, bacias e faixas).

COMPONENTES BÁSICOS: Conjunto motobomba

• **Conjunto motobomba**: capta água da fonte (reservatório, poço profundo, canal ou curso d'água) e a distribui no sistema de irrigação à pressão desejada. A bomba pode ser acionada por um motor de combustão interna ou motor elétrico.

COMPONENTES BÁSICOS: Conjunto motobomba

Potência absorvida pela água (Pa_a): conhecida como potência útil da bomba (Bernardo, 1989), corresponde à energia transmitida à água pela bomba.

$$Pa_a = \frac{Q \cdot Hman}{102}$$

$$Pa_b = \frac{Q \cdot Hman}{102 \cdot Eb}$$

Potência absorvida pela bomba (Pa_b): é a potência necessária no eixo da bomba (Bernardo, 1989) e corresponde à energia transmitida pelo motor à bomba.

Potência absorvida pelo motor (Pa_m): conhecida como potência instalada (Bernardo, 1989), corresponde à energia transmitida ao motor pela fonte de suprimento.

$$Pa_m = \frac{Q \cdot Hman}{102 \cdot Eb \cdot Em}$$

$$Q = vazão (L s^{-1})$$

Hman = altura manométrica (mca)

Eb = eficiência da bomba (decimal)

Em = eficiência da bomba (decimal)

102 = fator de conversão de unidades

UFRB / CCA 567 – Fund. de Irrigação e Drenagem – 2008.1 – MÉTODOS DE IRRIGAÇÃO

COMPONENTES BÁSICOS: **Conjunto motobomba**

Exemplo de Aplicação 01

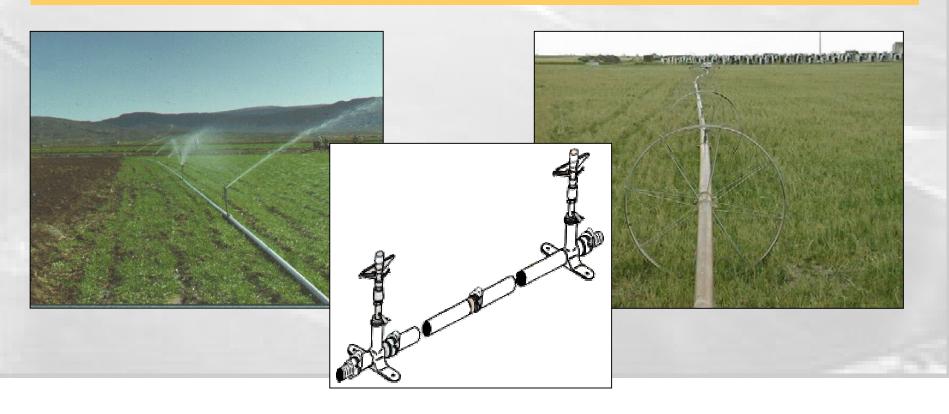
Considere a situação em que a vazão a ser bombeada = **0,07 m³ s⁻¹**, a altura manométrica = **50 mca**, a eficiência da bomba = **65%** e a do motor = **90%**.

Determine:

- (a) a potência necessária no eixo da bomba (kW);
- (b) a potência útil da bomba (kW);
- (c) a potência instalada do conjunto motobomba (kW).

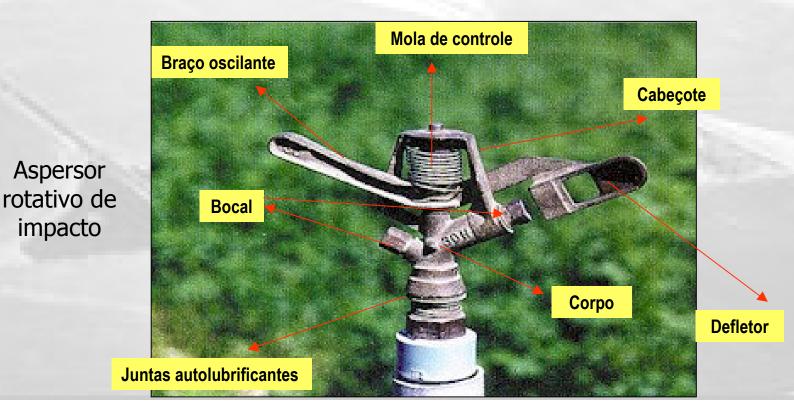
Obs.: Eb x Em = eficiência do conjunto motobomba. Em geral varia de 72 a 77%. Conhecida como *wire-to-water efficiency*.

COMPONENTES BÁSICOS : **Linha principal**

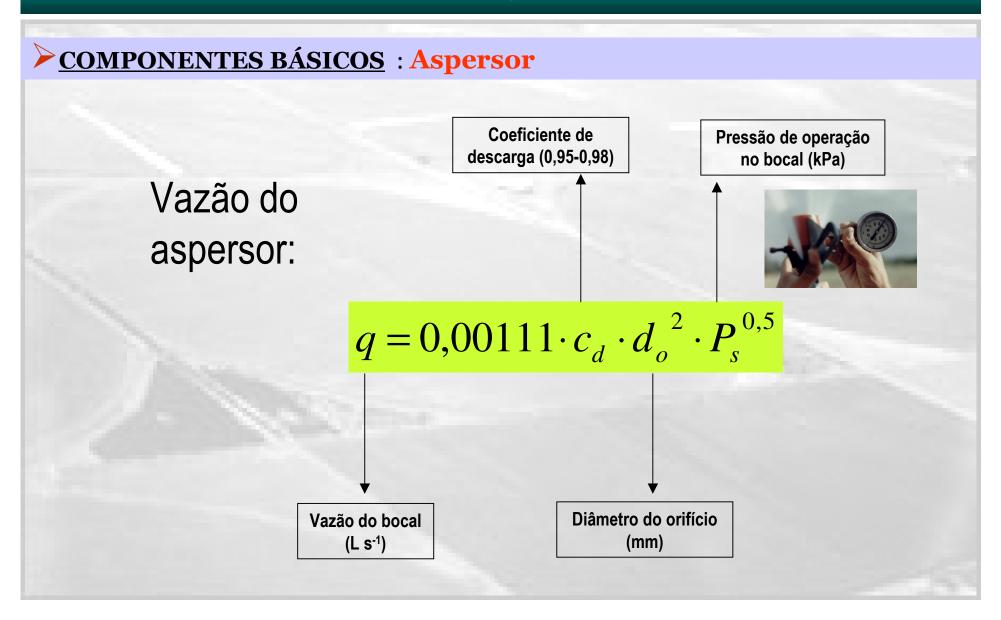

• Linha (tubulação) principal: conduz a água do conjunto motomba até a(s) linha(s) lateral(is). A principal pode ser uma tubulação de aço ou PVC enterrada. Em outros casos, tubulação portátil de alumínio ou plástico sobre a superfície é movimentada de um ponto a outro. Em áreas muito grandes, derivações da principal, denominadas linhas secundárias, distribuem água para as laterais.

COMPONENTES BÁSICOS: Linha lateral

• **Linha (tubulação) lateral**: conduz a água até os aspersores a partir da linha principal (ou secundária). Podem ser portáteis ou permanentemente enterradas. Quando enterradas são de PVC e quando superficiais podem ser de aço, alumínio ou plástico (PVC e PE). Em sistemas de movimentação contínua, a lateral move-se enquanto irriga.



COMPONENTES BÁSICOS : Aspersor


Aspersor

impacto

• **Aspersor**: pulveriza a água sobre a superfície do solo ou cultura com o objetivo de molhá-la uniformemente a uma taxa de aplicação que evite o esocamento superficial (runoff). Há muitas configurações de aspersores atualmente disponíveis.

UFRB / CCA 567 – Fund. de Irrigação e Drenagem – 2008.1 – MÉTODOS DE IRRIGAÇÃO

COMPONENTES BÁSICOS : Aspersor

Exemplo de Aplicação 02

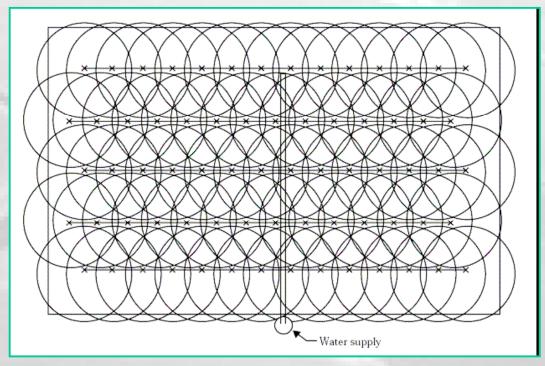
Considere os seguintes dados para um aspersor de uso agrícola: pressão de operação = 28 mca; bocais de diâmetro = 4,0 e 2,8 mm e coeficiente de descarga = 0,96.

Determine:

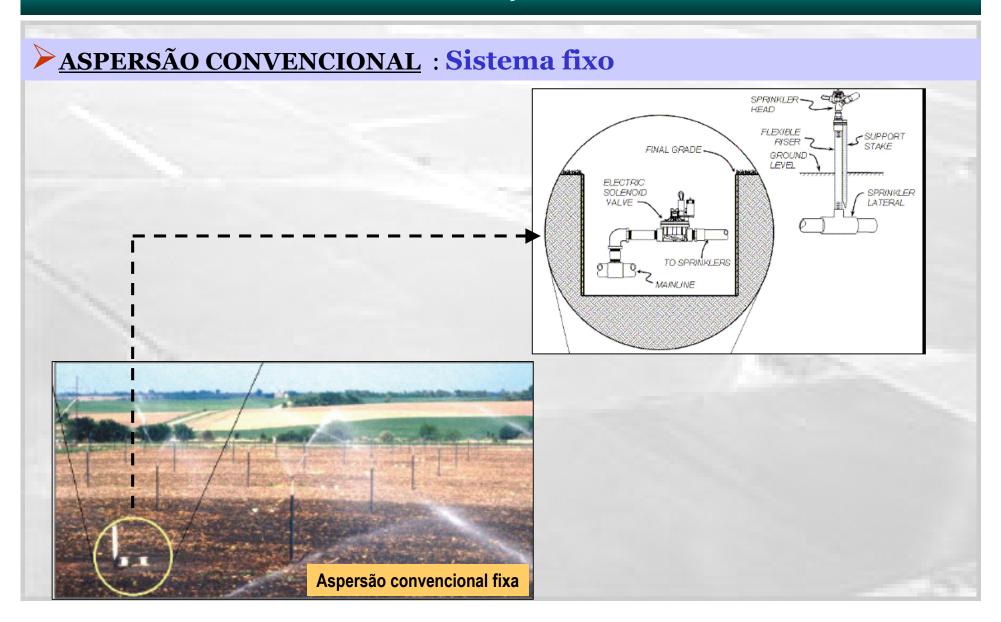
- (a) a vazão do bocal de maior diâmetro;
- (b) a vazão do bocal de menor diâmetro;
- (c) a vazão do aspersor;
- (d) a intensidade de aplicação, se instalado no espaçamento de 18 m x 24 m.

CLASSIFICAÇÃO

• **Aspersão convencional**: neste tipo, o aspersor é mantido em posição fixa enquanto irriga. Inclui (a) os sistemas fixos ou permanentes e (b) os sistemas de movimentação periódica. No caso a nenhum componente do sistema é movimentado durante a irrigação, enquanto que no caso b há movimentação de componentes entre irrigações sucessivas. Os sistemas do caso b podem ser portáteis e semi-portáteis (ou semi-permanentes).



• **Aspersão com movimentação contínua:** neste tipo, os aspersores irrigam enquanto movimentam-se em círculo ou em linha reta. Os principais sistemas deste grupo são o pivô central, a lateral móvel e o canhão hidráulico autopropelido.


ASPERSÃO CONVENCIONAL : Sistema fixo

♣ Este tipo de sistema é equipado com suficiente número de linhas laterais e aspersores para cobrir totalmente a área durante um evento de irrigação de tal maneira que a posição de qualquer componente necessite ser alterada.

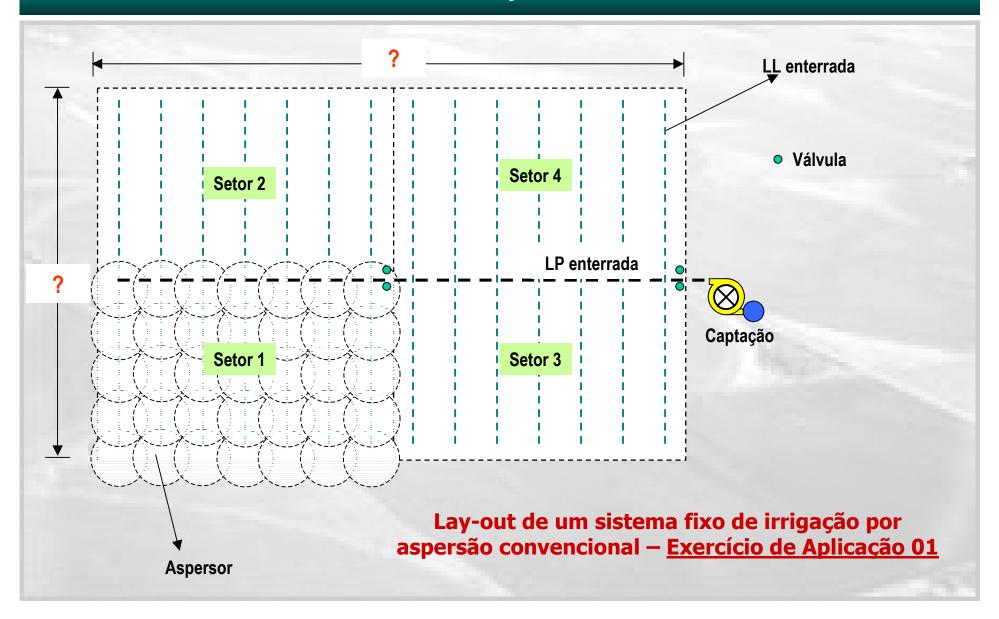
Lay-out de um sistema fixo de irrigação por aspersão

 d Em culturas anuais, o sistema fixo é instalado após o plantio, e removido antes da colheita − (plantio mecanizado?);

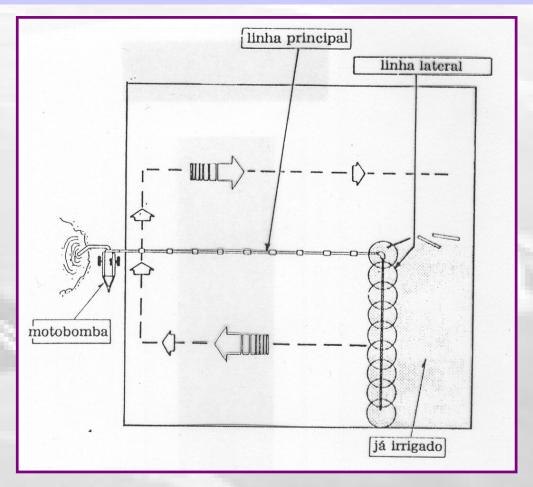
d Em alguns casos, os aspersores são usados apenas para pré-irrigação, germinação e emergência das plântulas ou controle de geadas, sendo removidos no final daqueles períodos;

Em culturas perenes, as laterais e os aspersores são frequentemente deixados no mesmo lugar de um ciclo de produção para outro;

Para reduzir a vazão, sistemas permanentes não irrigam 100% da área ao mesmo tempo, mas sim apenas um setor de cada vez;

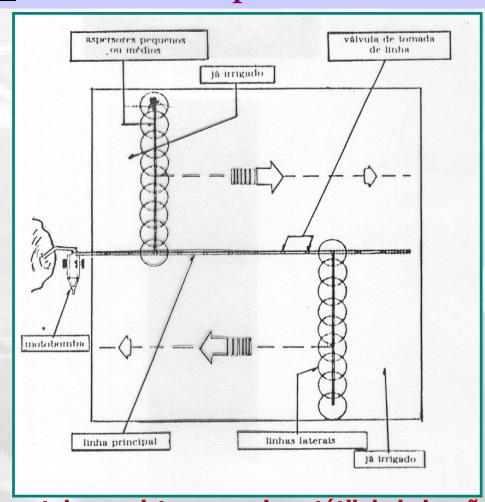

♦ A derivação da água de um setor para outro é feito por meio de válvulas que podem ser automatizadas;

São sistemas inicialmente caros devido ao número necessário de tubos, acessórios, aspersores e válvulas, mas os custos com mão-de-obra são reduzidos.


Exemplo de Aplicação 03

A figura a seguir esquematiza um sistema fixo de aspersão convencional, dividido em 4 setores. Considere: vazão média do aspersor = **2,05 m³ h⁻¹**; espaçamento = **18 m x 18 m**; número de emissores por lateral = **5**; número de laterais por setor = **7**; lâmina líquida de irrigação com base em dados do solo e cultura = **22 mm**. Determine:

- (a) o tamanho da área (ha);
- **(b)** a vazão da linha lateral (m³ h-1);
- (c) a vazão de um setor de irrigação (m³ h-1);
- (d) a área de influência de um único aspersor (m²);
- (e) a precipitação média dos aspersores (mm h-1);
- (f) tempo de irrigação por posição (h);
- (g) seria possível irrigar todos os setores num único dia, considerando uma JT = 8 h?
- (h) turno de rega esperado (dia);
- (i) volume de água bombeado por posição (m³).


> ASPERSÃO CONVENCIONAL : Sistema portátil

Lay-out de um sistema portátil de irrigação por aspersão

> ASPERSÃO CONVENCIONAL : Sistema semi-portátil

Quanto à irrigação em malha?? Sistema em que apenas os aspersores são deslocados. Enquadra-se nesta classificação??

Lay-out de um sistema semi-portátil de irrigação por aspersão.

Exemplo de Aplicação 04

Determine a vazão requerida por um sistema de irrigação por aspersão convencional que aplica água à taxa de **13 mm h**-¹. O mesmo é equipado por duas linhas laterais de **186 m** cada uma, sendo **16** aspersores em cada linha. O espaçamento dos aspersores nas linhas é de **12 m** e de **18 m** entre linhas.

Exemplo de Aplicação 05

Permitindo **1 h** para mover cada uma das laterais do Exemplo anterior, pede-se determinar quantas horas seriam necessárias para se aplicar uma lâmina de **50 mm** de água num campo de **16 ha**? Quantos dias de **10 horas** seriam necessários?

Bibliografia citada e consultada

BERNARDO, S. Manual de Irrigação. Viçosa: Imprensa Universitária. 1989, 596p.

SCHWAB, G. O.; FANGMEIER, D. D.; ELLIOT, W. J.; FREVERT, R. K. Soil and Water Conservation Engineering. New York: John Wiley & Sons. 4th ed. 1993, 507p.

TROUT, T. J.; KINCAID, D. C. On-Farm System Design and Operation and Land Management. In: R. J. LASCANO & SOJKA R. E. Irrigation of Agricultural Crops. 2nd ed. Madison: ASA, CSSA, SSSA. 2007. 664p. American Society of Agronomy, Chapter 5, p. 133-179. (Agronomy Monograph no. 30)