Universidade Federal do Recôncavo da Bahia Centro de Ciência Agrárias, Ambientais e Biológicas Núcleo de Engenharia de Água e Solo Disciplina: CCA 039 - Irrigação e Drenagem

DEFINIÇÕES

- ➤ Infiltração ⇒ descreve o processo de entrada de água no solo, através de sua superfície.
- Acontece quando uma superfície de solo recebe água por chuva ou irrigação
- ➤ Movimento da água no sentido vertical, de cima para baixo.
- > Taxa de infiltração influencia o escoamento superficial (erosão e inundação).

DEFINIÇÕES

➢ Redistribuição ⇒ movimento de água dentro do perfil do solo depois de cassada a chuva ou irrigação.

Ocorre em função das diferenças de potencial

Praticamente nulo quando essas diferenças são mínimas.

DEFINIÇÕES

✓ Irrigação por sulcos e por gotejamento ⇒ infiltração e redistribuição em todas as direções.

✓ Na aspersão e na inundação ⇒ ocorre,

preferencialmente, no sentido vertical.

IMPORTÂNCIA DA INFILTRAÇÃO

➤ Determinação do tempo necessário para aplicar uma determinada lâmina de irrigação;

Estimar a quantidade de água a ser aplicada para que se mantenha uma altura de água sobre a superfície do solo (caso da irrigação por inundação do arroz).

- ✓ No inicio da infiltração, solo ainda está relativamente seco, o gradiente de potencial é muito grande, e a velocidade de infiltração é alta.
- ✓ Após algum tempo, o gradiente de potencial é reduzido e a velocidade diminui;
- ✓ As argilas se expandem e contraem parcialmente os poros, a velocidade de infiltração diminui gradualmente até chegar a um ponto em que se mantém praticamente constante.

✓ Este valor constante chama-se de velocidade de infiltração básica.

✓ Depende fundamentalmente da textura do solo.

✓ Os valores de velocidade de infiltração básica (VIB) ou taxa de infiltração básica, são os seguintes:

- ➤ Solo Argiloso: < 5 mm h⁻¹
- ➤ Solo Franco-argiloso: 5 a 10 mm h⁻¹
- > Solo Franco: 10 a 20 mm h⁻¹
- > Solo Franco-arenoso: 20 a 30 mm h⁻¹
- ➢ Solo Arenoso: > 30 mm h⁻¹

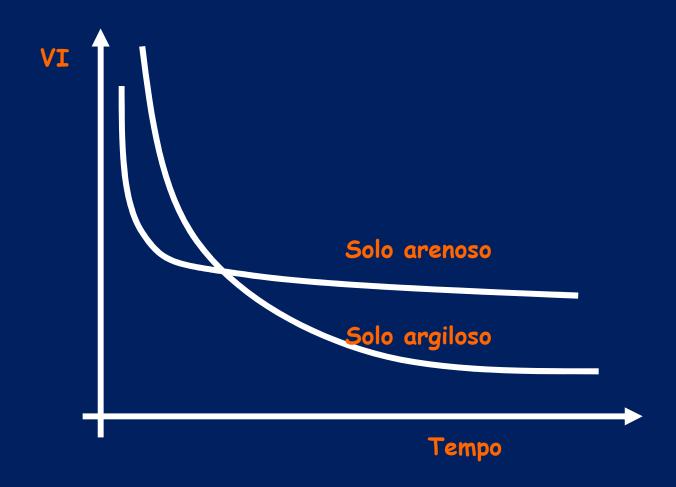


Figura 1. Processo de infiltração.

INFILTRAÇÃO

Infiltração
Redistribuição
Movimento

VEL INFILTRACAO.avi

FATORES QUE AFETAM A VELOCIDADE DE INFILTRAÇÃO

- Condições intrínsecas do solo:
 - cobertura vegetal;

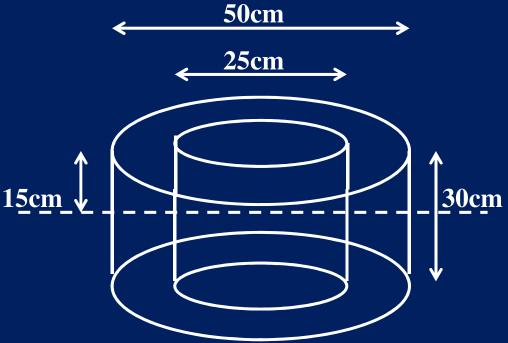
- estado de agregação das partículas do solo, seja por práticas culturais, efeito das irrigações ou precipitações;
- compactação pela maquinaria agrícola e
- erodibilidade.

FATORES QUE AFETAM A VELOCIDADE DE INFILTRAÇÃO

- Condições extrínsecas do solo:
 - textura;
 - adensamento de perfis;
 - flora e a fauna do solo;
 - conteúdo de água.

FATORES QUE AFETAM A VELOCIDADE DE INFILTRAÇÃO

- Condições de aplicação de água:
 - duração da aplicação de água,
 - carga hidráulica,
 - qualidade e a temperatura da água.


Método do Cilindro Infiltrômetro

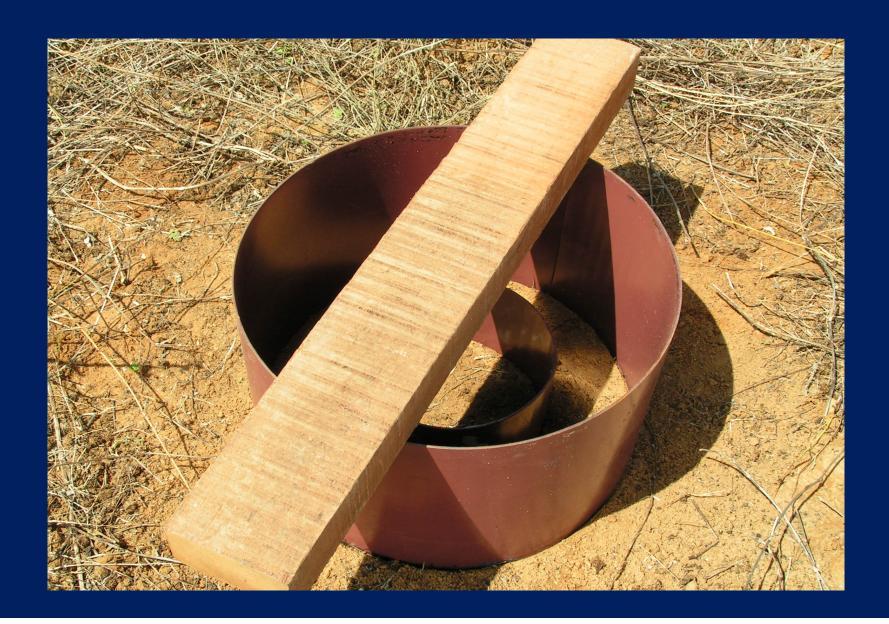
Consiste em se utilizar dois anéis concêntricos, sendo o maior com diâmetro de 50cm e o menor com diâmetro de 25cm, ambos com altura de 30cm.

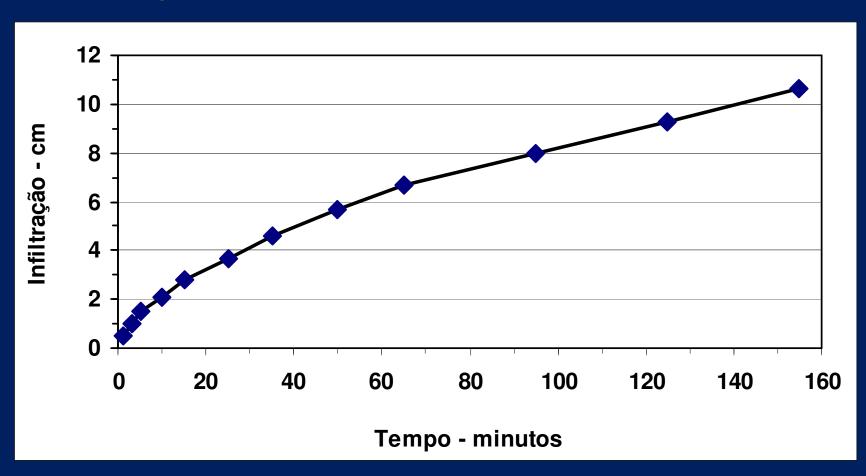
Método do Cilindro Infiltrômetro

A determinação da infiltração se processa pela medida da altura de água infiltrada no cilindro menor (interno) em tempos sucessivos de leituras.

Método do Cilindro Infiltrômetro

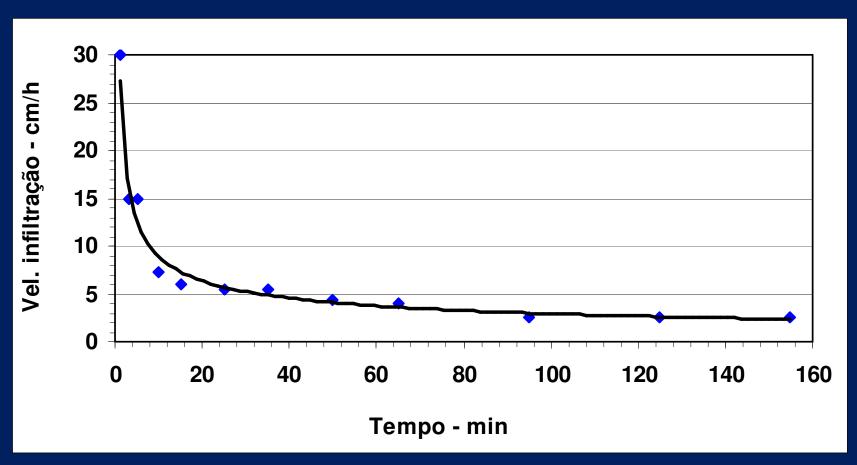
O cilindro externo tem a função de eliminar a infiltração lateral do cilindro interno.



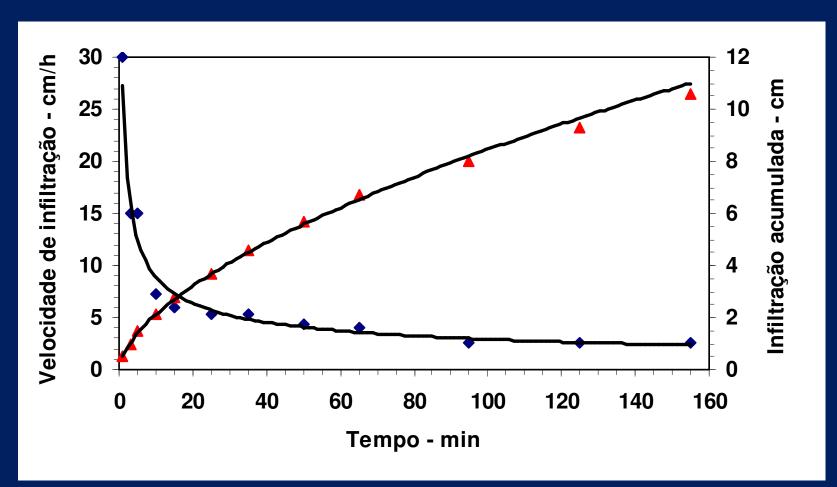


Cilindro Infiltrômetro - Teste de Infiltração

Horas	Tempo (mim)	T. acum. (mim)	Leitura da Régua (cm)	Dif. (cm)	I. Acum. (cm)	VI (cm/h)
12:44	0	0	10,8	-	-	-
12:45	1	1	10,3	0,5	0,5	30,0
12:47	2	3	9,8	0,5	1,0	15,0
12:49	2	5	9,3	0,5	1,5	15,0
12:54	5	10	8,7	0,6	2,1	7,20
12:59	5	15	8,0	0,7	2,8	8,40
13:09	10	25	7,1 / 12,4	0,9	3,7	5,40
13:19	10	35	11,5	0,9	4,6	5,40
13:34	15	50	10,4	1,1	5,7	4,40
13:49	15	65	9,4	1,0	6,7	4.0
14:19	30	95	8,1 / 11,7	1,3	8,0	2,60
14:49	30	125	10,4	1,3	9,3	2,60
15:19	30	155	9,1	1,3	10,6	2,60


Fonte: Klaus Reichardt

Infiltração Acumulada



Velocidade de Infiltração

Velocidade de Infiltração X Infiltração acumulada

Simuladores de Chuva

> A água é aplicada por aspersão com uma intensidade de aplicação superior à capacidade de infiltração do solo.

A área de aplicação é delimitada por placas metálicas, sendo a taxa de infiltração obtida pela diferença entre a intensidade de precipitação e a taxa de escoamento superficial resultante.

Modelos Empíricos

Kostiakov

$$I = kt^n$$

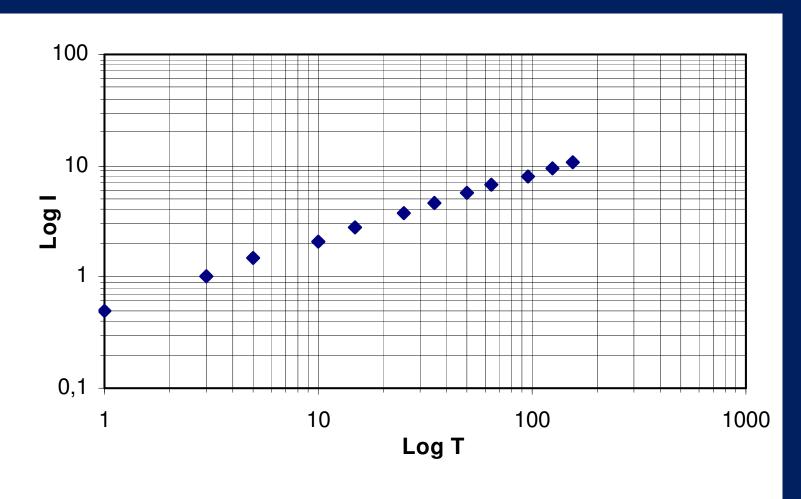
- Em que : k, n são constantes que dependem do solo e das suas condições iniciais.
- Limitado para situações em que há disponibilidade de dados de infiltração observados para a determinação dos parâmetros da equação.

Modelos Empíricos

Kostiakov-Lewis

$$I = kt^n + i_f t$$

• Eliminou a deficiência da taxa de infiltração tender a zero quando o tempo tende a infinito.



a) Método gráfico

b) Método da regressão linear

a) Método gráfico

b) Regressão linear

Equação de Infiltração:

$$I = K T^n$$

$$Y = \log I$$

$$a = \log K$$

$$X = \log T$$

$$K = ant \log a$$

 $\log I = \log K + n \log T$

$$a = \overline{Y} - n \ \overline{X}$$

$$\overline{Y} = \frac{\sum Y}{N} \quad \overline{X} = \frac{\sum X}{N}$$

$$n = \frac{\sum xy - \frac{\sum x\sum y}{N}}{\sum x^2 - \frac{\left(\sum x\right)^2}{N}}$$

b) Regressão linear (exemplo)

TESTE DE INFILTRAÇÃO									
x = T	Y = I	log x	log y	x.y	X.X				
5	1,6	0,6990	0,2041	0,1427	0,4886				
10	2,8	1,0000	0,4472	0,4472	1,0000				
15	3,6	1,1761	0,5563	0,6543	1,3832				
20	4,1	1,3010	0,6128	0,7973	1,6927				
30	4,7	1,4771	0,6721	0,9928	2,1819				
45	5,2	1,6532	0,7160	1,1837	2,7331				
60	5,4	1,7782	0,7324	1,3023	3,1618				
90	5,7	1,9542	0,7559	1,4772	3,8191				
120	5,8	2,0792	0,7634	1,5873	4,3230				
150	5,9	2,1761	0,7709	1,6774	4,7354				
180	6,0	2,2553	0,7782	1,7549	5,0863				
210	6,0	2,3222	0,7782	1,8070	5,3927				
Somatório		19,8716	7,7873	13,8240	35,9976				

Equação de Infiltração:

$$I = K T^n$$

$$I = 0.5298 T^{0.6014}$$

Velocidade de Infiltração (VI):

$$VI = \frac{\partial I}{\partial T}$$

$$VI = 27,229 T^{0,4854}$$

BIBLIOGRAFIA CONSULTADA E RECOMENDADA

- BERNARDO, S. Manual de Irrigação. UFV-Imprensa Universitária, Viçosa-MG. 6 ed. 1995. 657p.
- Brandão, V. S., Pruski, F. F., Silva, D. D., Infiltração da Água no Solo, 2. ed. Editora UFV, Viçosa: 2003, 98p.
- REICHARDT, K. A água em sistemas agrícolas. São Paulo.
 Editora Manole Ltda. 1990. 188p.

